Research Article | Published: 01 December 2003

Crown architecture of the trees of a sub-tropical forest of Uttaranchal (Garhwal) Himalaya

Aravind Kumar and Bhim Singh

Indian Journal of Forestry | Volume: 26 | Issue: 4 | Page No. 370-380 | 2003
DOI: https://doi.org/10.54207/bsmps1000-2003-01Q97N | Cite this article

Abstract

In a sub-tropical foot-hill forest of the Uttaranchal (Garhwal) Himalaya growing along the river Ganga near Rishikesh, 45 tree species were identified, out of which the 14 species, viz., Acacia catechu, Albizia julibrissin, A. procera, Bauhinia racemosa, Cordia wallichii, Dalbergia sissoo,  Ehretia  laevis, Emblica officinalis, Gmelina arborea, Holoptelea  integrifolia, Miliusa velutina, Moringa oleifera, Ougeinia oojeinensis  and  Toona ciliata represented  Troll’s model. Like-wise, the trees of Aegle marmelos, Bombax ceiba, Mallotus philippensis, Schleichera  oleosa, Terminalia  alata and Terminalia  bellirica exhibited the Aubreville’s model. Alstonia scholaris and Anogeissus latifolia belonged to Prevost’s model, Cassia fistula and Erythrina glabrescens represented Scarrone’s model and Casearia elliptica, Grewia oppositifolia and Shorea robusta showed the Raux’s model. The trees of Ficus racemosa, F. palmata and F. religiosa represented the Rauh’s model, Adina cordifolia and Mitragyna parvifolia represented Fagerlind’s model and Holarrhena antidysenterica and Syzygium cumini exhibited Mangenot’s model. Champagnot’s model was represented by Lagerstroemia parviflora and Naringi crenulata whereas Sapium insigne has been noted to represent Leeuwenberg’s model.

Keywords

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Aiba, S. and Kohyama, T. (1996). Tree species stratification in relation to allometry and demography in a warm temperate rain forest. J. Ecol., 84: 207-218. https://doi.org/10.2307/2261356

Google Scholar

2. Aiba, S. and Kohyama, T. (1997). Crown architecture and life history traits of 14 tree species in a warm temperate rain forest: significance of heterogeneity. J. Ecol., 85: 611-624.  https://doi.org/10.2307/2960532

Google Scholar

3. Baduni, N.P. and Sharma, C.M. (1997). Flexibility-fitness-compromise of the trees in moist temperate forests of Garhwal Himalaya. Ann. For., 5(2): 126-135.

Google Scholar

4. Bazzaz, F.A. (1983). Characteristics of population in relation to disturbance in natural and man modified ecosystems. In: Mooney, H.A. & Gordon, M. (eds.), Disturbance and Ecosystems: Components of Response. Springer Verlag, Berlin.  https://doi.org/10.1007/978-3-642-69137-9_17

Google Scholar

5. Bazzaz, F.A. and Pickett, S.T.A. (1980). Physiological ecology of tropical succession: a comparative review. Ann. Rev. Ecol., 11: 287-310.  https://doi.org/10.1146/annurev.es.11.110180.001443

Google Scholar

6. Boojh, R. and Ramakrishnan, P.S. (1982a). Growth strategy of trees related to successional status. I.  Architecture and extension growth. For. Ecol. Manag., 4: 359-374.  https://doi.org/10.1016/0378-1127(82)90035-4

Google Scholar

7. Boojh, R. and Ramakrishnan, P.S. (1982b). Growth strategy of trees related to successional status. II. Leaf dynamics. For. Ecol. Manag., 4: 375-386.  https://doi.org/10.1016/0378-1127(82)90036-6

Google Scholar

8. Borchert, R. and Tomlinson, P.B. (1984). Architecture and crown geometry in Tabebuia rosea (Bignoniaceae). Amer. J. Bot., 71(7): 958-969.  https://doi.org/10.1002/j.1537-2197.1984.tb14162.x

Google Scholar

9. Brunig, E.F. (1976). Tree forms in relation to environmental conditions: an ecological viewpoint. In: Cannell, M.G.R. and Last, F.T.  (ed.). Tree Physiology and Yield Improvement. Academic Press, New York.  139-156.

Google Scholar

10. Campbell, G.S. and Norman, J.M. (1989). The description and measurement of plant canopy structure. In: Russell. G., Marshall, B. & Jarvis, P.G. (eds.), Plant Canopies: Their growth, Form and Function. Biology Society of Experimental Cambridge University, New York.  https://doi.org/10.1017/CBO9780511752308.002

Google Scholar

11. Canham, C.D. and Marks, P.C. (1985). The responses of woody plants to disturbance: patterns of establishment and growth. In: Pickett, S.T.A. & White, P.S. (eds.), The ecology of Natural disturbance and Patch Dynamics.  Academic Press, New York.  https://doi.org/10.1016/B978-0-12-554520-4.50016-2

Google Scholar

12. Chen, J.M.; Blanken, P.D.; Black, T.A.; Guilbeault, M. and Chen, S. (1997). Radiation regime and canopy architecture in a boreal aspen forest. Agri. For. Meteor., 86(1-2): 107-125.  https://doi.org/10.1016/S0168-1923(96)02402-1

Google Scholar

13. Fang, J.Y.; Liu, G.H. and Zang, S.H. (1993). Relationship between tree height and diameter and its biological significance in a wood plant population. Chin. J. Bot., 5(1): 77-82.

Google Scholar

14. Halle, F.; Oldeman, R.A.A. and Tomlinson, P.B. (1978). Tropical Trees and Forests: An Architectural Analysis.  Springer-Verlag, New York.  https://doi.org/10.1007/978-3-642-81190-6

Google Scholar

15. Innes, J.L. (1993). Forest Health: Its Assessment and Status. CAB International Wallingford, U.K.

Google Scholar

16. Lieberman, D. and Lieberman, M. (1987). Forest tree growth and dynamics at La Selva, Costa Rica (1969-82). J. Trop. Ecol., 3: 347-358.  https://doi.org/10.1017/S0266467400002327

Google Scholar

17. Lowman, M.D. and Wittman, P.K. (1996). Forest canopies: methods, hypotheses and future directions.  Ann.  Rev.  Ecol. Syst., 27: 25-81.  https://doi.org/10.1146/annurev.ecolsys.27.1.55

Google Scholar

18. Mabberley, D.J. (1973). Evolution in giant groundsels. Kew Bull., 28(1): 61-96.  https://doi.org/10.2307/4117066

Google Scholar

19. Manokaran, N. and Kochummen, K.M. (1987). Recruitment, growth and mortality of tree species in a lowland dipterocarp forest in peninsular Malaysia. J. Trop. Ecol., 3: 315-330.  https://doi.org/10.1017/S0266467400002303

Google Scholar

20. Martens, S.N.; Ustin, S.L. and Norman, J.M. (1991). Measurement of tree canopy architecture. Int. J. Remo. Sen., 12(7): 1525-1545.  https://doi.org/10.1080/01431169108955187

Google Scholar

21. Martens, S.N.; Ustin, S.L. and Rousseau, R.A. (1993). Estimation of tree canopy, leaf area index by gap fraction analysis. For.  Ecol. & Manag., 61: 91-108.  https://doi.org/10.1016/0378-1127(93)90192-P

Google Scholar

22. Oliver, C.D. and Larson, B.C. (1996). Forest Stand Dynamics. Wiley, New York.

Google Scholar

23. Parker, G.G. (1995). Structure and micro-climate of forest canopies. Sanpliego : Academic. pp. 73-106. 

Google Scholar

24. Parker, G.G.; Smith, A.P. and Hogan, K.P. (1992). Access to the upper forest canopy with large tower crane. Bioscience, 42: 664-670.  https://doi.org/10.2307/1312172

Google Scholar

25. Pickett, S.T.A. (1983). Differential adaptations of tropical species to canopy gaps and its role in community dynamics. Trop. Ecol., 24: 68-84.

Google Scholar

26. Richards, P.W. (1952). The Tropical Rain Forest: An Ecological Study. Cambridge University Press, Cambridge.

Google Scholar

27. Robinson, D.F. (1996). A symbolic framework for the description of tree architecture models. Bot. J. Linn. Soc., 121(3): 243-261.  https://doi.org/10.1111/j.1095-8339.1996.tb00756.x

Google Scholar

28. Schmid, B. and Bazzaz, F.A. (1994). Crown construction, leaf dynamics and carbon gain in two perennials with contrasting architecture. Ecol. Monog., 64(2): 177-203.  https://doi.org/10.2307/2937040

Google Scholar

29. Singh, B. (1999). A critical analysis of tree biology of dominant species of a Ganga basin forest of outer Garhwal Himalaya at Rishikesh. Ph.D. thesis, H.N.B. Garhwal University, Srinagar (Garhwal), India.

30. Sinoquet, H. and Rivet, P. (1997). Measurement and visualization of the architecture of an adult tree based on a three dimensional digitising device. Trees : Structure and Function, 11(5): 265-270.  https://doi.org/10.1007/s004680050084

Google Scholar

31. Thomas, S.C. (1996). A symptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. Ame. J. Bot., 83: 556-566.  https://doi.org/10.1002/j.1537-2197.1996.tb12739.x

Google Scholar

32. Tomlinson, P.B. (1983). Tropical Rain Forest Ecosystem: A Structure and Function. Amsterdam: Elsevier Scientific Publishing Co.

33. Tomlinson, P.B. and Gill, A.M. (1973). Growth habits of tropical trees: some guiding principles. In: Meggers, B.J.; Ayensu, E.S, & Duckworth, W.D. (eds.), Tropical Forest Ecosystems in Africa and South America: A Comparative Review. Smithsonian Institution, Washington, pp. 124-143.

Google Scholar

34. Tomlinson, P.B. and Zimmermann, M.H. (1978). Tropical Trees as Living Systems. Cambridge University Press, Cambridge.

Google Scholar

35. Tremmel, D.C. and Bazzaz, F.A. (1993). How neighbouring canopy architecture effect target plant performance. Ecomeogy, 74(7): 2114-2124.  https://doi.org/10.2307/1940856

Google Scholar

36. Whitmore, T.C. (1984). Tropical Rain Forests of the Far East. Clarendon Press, Oxford.

Google Scholar

37. Zimmermann, M.H. and Brown, C.L. (1971). Trees: Structure and Function. Heildelberg Berlin, Springer Verlag.  https://doi.org/10.1007/978-3-642-88528-0

Google Scholar

About this article

How to cite

Kumar, A. and Singh, B., 2003. Crown architecture of the trees of a sub-tropical forest of Uttaranchal (Garhwal) Himalaya. Indian Journal of Forestry, 26(4), pp.370-380. https://doi.org/10.54207/bsmps1000-2003-01Q97N

Publication History

Manuscript Published on 01 December 2003

Share this article

Anyone you share the following link with will be able to read this content: