1. Bargali, K. and Bargali, S.S., 2016. Germination capacity of seeds of leguminous plants under water deficit conditions: implication for restoration of degraded lands in Kumaun Himalaya. Tropical Ecology, 57(3), pp.445-453.
2. Bargali, K., Joshi, B., Bargali, S.S. and Singh, S.P., 2014. Diversity within Oaks. International Oaks, 25, pp.57?70.
3. Bargali, K., Joshi, B., Bargali, S.S. and Singh, S.P., 2015. Oaks and the biodiversity they sustain. International Oaks, 26, pp.65-76.
4. Bargali, K., Manral, V., Padalia, K., Bargali, S.S., and Upadhyay, V.P., 2018. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, pp.125-135. https://doi.org/10.1016/j.catena.2018.07.001
5. Bargali, K. and Singh, S.P., 1996. Competitive abilities of Quercus leucotrichophora and Pinus roxburghii seedlings in relation to experiments variations in soil moisture availability. Tropical Ecology, 37, pp.223-227.
6. Bargali, S.S., Padalia, K. and Bargali, K., 2019. Effects of tree fostering on soil health and microbial biomass under different land use systems in central Himalaya. Land Degradation & Development, 30(16), pp.1984-1998. https://doi.org/10.1002/ldr.3394
7. Baskin, C.C. and Baskin, J.M., 1998. Seeds: Ecology, biogeography and evolution of dormancy and Germination. Academic press, USA.
8. Bhatt, J. and Ram, J., 2015. Seed maturity indices in carpinus viminea (Himalayan hornbeam) along altitudinal gradient in relation to climatic change; International Journal of Recent Scientific Research, 6(7), pp.40-50.
9. Bisht, S., Bargali, K., Bargali, S.S. and Rawat, Y.S., 2021. How resilient are the oak forests of Askot Wildlife sanctuary, western Himalaya? Indian J. Forest., 44(2), pp.87-97. https://doi.org/10.54207/bsmps1000-2022-434UM5
10. Bisht, S., Bargali, K., Bargali, S.S., Rawat, P.S., and Rawat, Y.S. 2022. Carbon pool in Quercus lanuginosa (D.Don) forest of Askot wildlife sanctuary, Western Himalaya in relation to stand attributes. Indian Forester, 148(7), pp.709-717. https://doi.org/10.36808/if/2022/v148i7/168610
11. Bisht, V.K., Kuniyal, C.P., Nautiyal, B.P. and Prasad, P., 2013. Spatial distribution and regeneration of Quercus semecarpifolia and Quercus floribunda in a subalpine forest of western Himalaya, India. Physiol Mol Biol Plants, 19(3), pp.443-448. https://doi.org/10.1007/s12298-013-0189-z
12. Bisht, V.K., Negi, J.S., Bhandari, A.K., Bhatt, V.P. and Kandari, L.S., 2017. Effect of pre-sowing treatments on seed germination behaviour of Hedychium spicatum Buch.-Ham. ex Smith. Proc. Nat. Acad. Sci., India, Sect. B Biol. Sci., 87, pp.53-58. https://doi.org/10.1007/s40011-015-0568-z
13. Bisht, V.K. and Kuniyal, C.P., 2013. Climate change matters because oak cannot move upward. Current Science, 104(6), pp.689-690.
14. Connor, K.F., 2004. Storing acorns. Native Plants Journal, 5(2), pp.160-166. https://doi.org/10.1353/npj.2005.0004
15. Das, N., 2014. The Effect of Seed Sources Variation and Pre-sowing Treatments on the Seed Germination of Acacia catechu and Elaeocarpus floribundus Species in Bangladesh. International Journal of Forestry Research. https://doi.org/10.1155/2014/984194
16. Edwards, D.G.W., 1980. Maturity and quality of tree seeds-a state of the art review. Seed Science and Technology, 8(4), pp.625-657.
17. Fartyal, A., Khatri, K., Bargali, K. and Bargali, S.S., (2022). Altitudinal variation in plant community, population structure and carbon stock of Quercus semecarpifolia Sm. forest in Kumaun Himalaya. Journal of Environmental Biology, 43, pp.133-146. https://doi.org/10.22438/jeb/43/1/MRN-2003
18. Joshi, K, Tewari, B. and Ram, J., 2022. Seed characteristics and germination of Quercus leucotrichophora A. Camas tree along the elevation gradient in central Himalaya, India. Indian Journal of Ecology, 49(2), pp.559-563. https://doi.org/10.55362/IJE/2022/3561
19. Karki, H., Bargali, K. and Bargali, S.S., 2018. Effect of sowing time on germination and early seedling growth of Quercus floribunda Lindl. Forest Environmental Science, 34(3), pp.199-208. https://doi.org/10.7747/JFES.2018.34.3.199
20. Kochankov, V.G., Grzesik, M., Chojnowski, M. and Nowak. J., 1998. Effect of temperature, growth regulators and other chemicals on Echinacea purpurea (L.) Moench seed germination and seedling survival. Seed Science and Technology, 26(3), pp.547-554.
21. Manral, V., Bargali, K., Bargali, S.S., and Shahi, C., 2020. Changes in soil biochemical properties following replacement of Banj oak forest with Chir pine in Central Himalaya, India. Ecological Processes, 9. https://doi.org/10.1186/s13717-020-00235-8
22. Manral, V., Bargali, K., Bargali, S.S., Jhariya, M.K. and Padalia, K., 2022. Relationships between soil and microbial biomass properties and annual flux of nutrients in Central Himalaya forests, India. Land Degradation & Development, 33(12), pp.2014-2025. https://doi.org/10.1002/ldr.4283
23. Murali, K.S., 1997. Patterns of Seed Size, Germination and Seed Viability of Tropical Tree Species in Southern India. Biotropica, 29(3), 271-279. https://doi.org/10.1111/j.1744-7429.1997.tb00428.x
24. Murali, K.S. and Sukumar, R., 1994. Reproductive phenology of a tropical dry forest in Mudumalai, Southern India. Journal of Ecology, 82(4), pp.759-767. https://doi.org/10.2307/2261441
25. Nautiyal, A.R., Rawat, D.C.S. and Prasad, P., 2000. Physiological aspects of seed source variation in seed germination of Quercus leucotrichophora A. Camus. Indian Forester, 126(3), pp. 269-273.
26. Padalia, K., Bargali, S.S., Bargali, K., and Manral, V., 2022. Soil microbial biomass phosphorus under different land use systems of Central Himalaya. Tropical Ecology, 63, pp.30-48. https://doi.org/10.1007/s42965-021-00184-z
27. Pandey, R., Bargali, K. and Bargali, S.S., 2017. Does seed size affect water stress tolerance in Quercus leucotrichophora A. Camus at germination and early seedling growth stage? Biodiversity Int. J., 1(1), pp.24-30. https://doi.org/10.15406/bij.2017.01.00005
28. Rao, P.B., Ralhan, P.K. and Singh, S.P., 1986. Seed germination of Quercus leucotrichophora A. Camas. ex. Bahadur and Pinus roxburghii Sarg. on certain single factor environmental gradients. Proc. Indian Acad. Sci., 96, pp.63-69. https://doi.org/10.1007/BF03053272
29. Rossello, J.A. and Mayol, M., 2002. Seed germination and Reproductive Features of Lysimachia minoricensis (Primulaceae), a Wild-extinct plant. Annals of Botany, 89(5), pp.559-562. https://doi.org/10.1093/aob/mcf083
30. Schopmeyer, C.S., 1974. Seeds of woody plants in the United States. U.S. Department of Agriculture, Agriculture Handbook.
31. Singh, J.S. and Singh, S.P., 1986. Structure and function of the Central Himalayan oak forests. Proc. Indian Acad. Sci., 96, pp.159-189. https://doi.org/10.1007/BF03053301
32. Singh, B., Bhatt, B.P. and Prasad, P., 2004. Effect of seed source and temperature on seed germination of Celtis australis L.: A promising agroforestry tree-crop of Central Himalaya, India. Forests, Tees and Livelihoods, 14(1), pp.53-60. https://doi.org/10.1080/14728028.2004.9752479
33. Singh, J.S. and Singh, S.P., 1987. Forest Vegetation of the Himalaya. Bot. Rev., 53, pp.80-192. https://doi.org/10.1007/BF02858183
34. Tewari, A., Mittal, A. and Singh, N., 2017. Seed maturation timing in Quercus leucotrichophora A. Camus along an altitudinal gradient in Uttarakhand Himalaya. Environment Conservation Journal, 18(3), pp.53-59. https://doi.org/10.36953/ECJ.2017.18307
35. Troup, R.S., 1921. The silviculture of Indian trees Vol. 1, Clarendon press, Oxford.
36. Troup, R.S., 1921. The silviculture of Indian trees Vol. 3, Clarendon press, Oxford.
37. Tweddle, J.C., Dickie, J.B., Baskin, C.C., Baskin, J.M., 2003. Ecological aspects of seed desiccation sensitivity. Journal of Ecology, 91(2), pp.294-304. https://doi.org/10.1046/j.1365-2745.2003.00760.x
38. Zobel, D.B., Ram, J. and Bargali, S.S., 1995. Structural and physiological changes in Quercus leucotrchophora and Pinus roxburghii associated with stand disturbance in the Kumaun Himalaya, India. International Journal of Ecology and Environmental Sciences, 21, pp.45-66.