1. Aggarwal, A. and Kumar, M., 2020. Image surface texture analysis and classification using deep learning. Multimedia Tools and Applications, 80, pp.1289-1309.
2. Bhusnurmath, R.A. and Doddamani, S., 2023a. Bark Texture Classification Using Deep Transfer Learning. In International Conference on Multi-disciplinary Trends in Artificial Intelligence, pp.407-420. Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36402-0_38
3. Bhusnurmath, R.A. and Doddamani, S., 2023b. Texture Feature Extraction and Classification Using Machine Learning Techniques. In International Conference on Emerging Research in Computing, Information, Communication and Applications, pp.509-520. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7622-5_35
4. Cui, Z., Li, X., Li, T. and Li, M., 2023. Improvement and Assessment of Convolutional Neural Network for Tree Species Identification Based on Bark Characteristics. Forests, 14(7), 1292. https://doi.org/10.3390/f14071292
5. Faizal, S., 2022. Automated identification of tree species by bark texture classification using convolutional neural networks. arXiv preprint arXiv:2210.09290. https://doi.org/10.22214/ijraset.2022.46846
6. Fekri-Ershad, S., 2020. Bark texture classification using improved local ternary patterns and multilayer neural network. Expert Systems with Applications, 158, 113509. https://www.kaggle.com
7. Hiremath, P.S. and Bhusnurmath, R.A., 2017a. Texture classification using partial differential equation approach and wavelet transform. Pattern Recognition and Image Analysis, 27, pp.473-479. https://doi.org/10.1134/S1054661817030154
8. Hiremath, P.S. and Bhusnurmath, R.A., 2017b. Industrial applications of colour texture classification based on anisotropic diffusion. In Recent Trends in Image Processing and Pattern Recognition: First International Conference, RTIP2R 2016, Bidar, India, December 16–17, 2016, Revised Selected Papers 1 (pp.293-304). Springer Singapore. https://doi.org/10.1007/978-981-10-4859-3_27
9. Ido, J. and Saitoh, T., 2019. CNN-based tree species identification from bark image. In Tenth International Conference on Graphics and Image Processing (ICGIP2018) (Vol. 11069, pp.991-996). SPIE. https://doi.org/10.1117/12.2524213
10. Juola, J., Hovi, A. and Rautiainen, M., 2023. Classification of tree species based on hyperspectral reflectance images of stem bark. European Journal of Remote Sensing, 56(1), 2161420. https://doi.org/10.1080/22797254.2022.2161420
11. Kapil, R., Marvasti-Zadeh, S. M., Goodsman, D., Ray, N. and Erbilgin, N., 2022. Classification of Bark Beetle-Induced Forest Tree Mortality using Deep Learning. arXiv preprint arXiv:2207.07241. https://doi.org/10.48550/arXiv.2207.07241
12. Kim, T.K., Hong, J., Ryu, D., Kim, S., Byeon, S.Y., Huh, W. and Kim, H.S., 2022. Identifying and extracting bark key features of 42 tree species using convolutional neural networks and class activation mapping. Scientific Reports, 12(1), p.4772. https://doi.org/10.1038/s41598-022-08571-9
13. Misra, D., Crispim-Junior, C. and Tougne, L., 2020. Patch-based CNN evaluation for bark classification. In Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 (pp.197-212). Springer International Publishing. https://doi.org/10.1007/978-3-030-65414-6_15
14. Mosaffaei, Z. and Jahani, A., 2021. Modeling of ash (Fraxinus excelsior) bark thickness in urban forests using artificial neural network (ANN) and regression models. Modeling Earth Systems and Environment, 7(3), pp.1443-1452. https://doi.org/10.1007/s40808-020-00869-9
15. Nisa, M., Shah, J.H., Kanwal, S., Raza, M., Khan, M.A., Damaševičius, R. and Blažauskas, T., 2020. Hybrid malware classification method using segmentation-based fractal texture analysis and deep convolution neural network features. Applied Sciences, 10(14), 4966. https://doi.org/10.3390/app10144966
16. Ratajczak, R., Bertrand, S., Crispim-Junior, C. F. and Tougne, L., 2019. Efficient bark recognition in the wild. In International conference on computer vision theory and applications (VISAPP 2019).
17. Wan, Y.Y., Du, J.X., Huang, D.S., Chi, Z., Cheung, Y.M., Wang, X.F. and Zhang, G.J., 2004. Bark texture feature extraction based on statistical texture analysis. In Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 482-485. https://doi.org/10.1109/ISIMP.2004.1434106