Research Article | Published: 01 March 2013

Above-Ground Biomass and Carbon Stocks in Tropical Deciduous Forests of Nallamalais, Eastern Ghats, Andhra Pradesh, India

V. Srinivasa Rao, Kothareddy Prasad, Dasari Veeranjaneyulu, P. Priyadarsini and Boyina Ravi Prasad Rao

Indian Journal of Forestry | Volume: 36 | Issue: 1 | Page No. 9-16 | 2013
DOI: https://doi.org/10.54207/bsmps1000-2013-287L5O | Cite this article

Abstract

The present study aimed to estimate above-ground biomass and carbon stocks of different life forms in tropical dry and moist deciduous forests of Nallamalais, one of the centers of plant diversity of India, located in central part of the Eastern Ghats. The present study used a non-destructive method of biomass estimation. From the sampled inventory it is found that the dry deciduous vegetation with 114 species comprising a total of 1737 tree individuals with a mean basal area of 16.37±9.12 m2 ha-1, 61.52±41.66 Mg ha-1 (Mega gram=106 g) above-ground biomass and 26.83±15.69 Mg ha-1 carbon, the moist deciduous vegetation with 115 species, comprising 1431 tree individuals with a mean basal area of 29.78±4.83 m2 ha-1, contributing 110.37±26.12 Mg ha-1 above-ground biomass and 52.24±12.48 Mg ha-1 carbon. It is revealed that the moist deciduous forests are more efficient in terms of sequestering atmospheric carbon.

Keywords

Regulators, Fuel emissions, Sequestered, Carbo pool assessment, Specific gravity values, Biomass density

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linnean Soci. 161: 105-121.  https://doi.org/10.1111/j.1095-8339.2009.00996.x

2. Bargali, S.S. and Bargali, K. (2000). Diversity and biomass of the understorey vegetation in an age series of Eucalyptus tereticornis plantation. Int. J. Ecol.and Environ. Sci. 26: 173-181

Google Scholar

3. Bharali, S. and Khan, M.L. (2011). Climate change and its impacts on biodiversity; some management options for mitigation in Arunachal Pradesh. Curr. Sci., 101(7): 855-860

Google Scholar

4. Brown, S., Gillespie, A.J.R. and Lugo, A.E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci., 35(4): 881-902

Google Scholar

5. Bujarbarus, P. and Baruah, S. (2009). Vulnerability of fragile ecosystems of North East India in context with the global climate change: an ecological projection. IOP Conference Series: Earth Environ. Sci., 6: 072016.  https://doi.org/10.1088/1755-1307/6/7/072016

Google Scholar

6. Castilho, C.V., Magnusson, W.E., de Araujo, R.N.O., Luizao, R.C.C., Luizao, F.J., Lima, A.P. and Higuchi, N. (2006). Variation in above-ground tree live biomass in a central Amazonian forest: effect of soil and topography. For. Ecol. and Manag., 234: 85-96.  https://doi.org/10.1016/j.foreco.2006.06.024

Google Scholar

7. Cicerone, R.J. (2006). Finding Climate Change and Being Useful. 6th National Conference on Science, Policy and the Environment, National Council for Science and the Environment,Washington, D.C.

Google Scholar

8. Clark, D.B. and Clark, D.A. (2000). Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. and Manag., 137: 185-198.  https://doi.org/10.1016/S0378-1127(99)00327-8

Google Scholar

9. Dadhwal, V.K., Singh, S. and Patil, P. (2009). Assessment of phytomass carbon pools in forest ecosystems in India. NNRMS Bulletin. 41-57

Google Scholar

10. DeWalt, S.J. and Chave, J. (2004). Structure and biomass of four lowland neotropical forests. Biotropica. 36: 7-16.  https://doi.org/10.1111/j.1744-7429.2004.tb00291.x

Google Scholar

11. FRI (1996). Indian Woods. Volume I-VI. Forest Research Institute, Ministry of Environment and Forests, Dehra Dun, India

12. FSI (1996). Volume Equations for Forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Dehra Dun, India

Google Scholar

13. FSI (2009). India State of Forest Report 2009. Forest Survey of India, Ministry of Environment and Forests, Government of India, Dehra Dun, India

14. Greenland, D.J. and Kowal, J.M.L. (1960). Nutrient content of the moist tropical forest in Ghana. Plant Soil., 12: 154-174.  https://doi.org/10.1007/BF01377368

Google Scholar

15. Haripriya, G.S. (2000). Estimation of biomass in Indian forests. Biomass and Bioenergy. 19: 245-258.  https://doi.org/10.1016/S0961-9534(00)00040-4

Google Scholar

16. Haripriya, G.S. (2002). Biomass carbon of truncated diameter classes in Indian forests. For. Ecol. and Manag., 168: 1-13. https://doi.org/10.1016/S0378-1127(01)00729-0

Google Scholar

17. IPCC-WGI (2007). Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge. UK

Google Scholar

18. Kannan, R. and James, D.A. (2009). Effects of climate change on global biodiversity: a review of key literature. Trop. Ecol., 50(1): 31-39

Google Scholar

19. Limaye, V.D. and Sen, B.R. (1956). Indian Forest Records: Timber Mechanics. Manager of Publications. Delhi

Google Scholar

20. Madugundu, R., Nizalapur, V. and Jha, C.S. (2008). Estimation of LAI and above-ground biomass in deciduous forests; Western Ghats of Karnataka, India. Int. J. Applied Earth Observations.  https://doi.org/10.1016/j.jag.2007.11.004

Google Scholar

21. Malhi, Y., Wood, D., Baker, T.R., Wright, J., Philllips, O.L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Monteagudo, A., Neill, D.A., Nunez-Vargas, P., Pitman, N.C.A., Quesada, C.A., Salomao, R., Silva, J.N.M., Lezama, A.T., Terborgh, J. and Vasquez-Martinez, R. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Change Biol., 12: 1107-1138.   https://doi.org/10.1111/j.1365-2486.2006.01120.x

Google Scholar

22. Mani, S. and Parthasarathy, N. (2007). Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy. 31: 284-290.  https://doi.org/10.1016/j.biombioe.2006.08.006

Google Scholar

23. McGroddy, M.E., Daufresne, T. and Hedin, L.O. (2004). Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Red-field type ratios. Ecology. 85: 2390-2401.  https://doi.org/10.1890/03-0351

Google Scholar

24. Muller-Landau, H.C., Condit, R.S., Harms, K.E., Marks, C.O. and Thomas, S.C. et al., (2006). Comparing tropical forest tree size distribution with the predictions of metabolic ecology and equilibrium models. Ecol. Letters. 9: 589-602.  https://doi.org/10.1111/j.1461-0248.2006.00915.x

Google Scholar

25. Ogawa, H., Yoda, K., Ogino, K. and Kira, T. (1965). Comparative ecological studies on three main types of forests vegetation in Thailand II. Plant Biomass. In: (Edited by Kira, T & Iwata, K.). Nature and Life in Southeast Asia. Fauna and Flora Research Society. 4: 49-80

26. Pande, P.K. (2005). Biomass and productivity of some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Trop. Ecol., 46(2): 229-239

Google Scholar

27. Patil, P., Singh, S. and Dadhwal, V.K. (2011). Above Ground Forest Phytomass Assessment in Southern Gujarat.  Journ. Indian Soc. Rem. Sens.   https://doi.org/10.1007/s12524-011-0121-3

Google Scholar

28. Phillips, O.L. and Gentry, A.H. (1994). Increasing turnover through time in tropical forests. Science. 263: 954-958.  https://doi.org/10.1126/science.263.5149.954

Google Scholar

29. Prasad, V.K., Kant, Y. and Badarinath, K.V.S. (2000). Quantifying short-term carbon dynamics from land use changes using satellite data-a case study from Rampa forests (Eastern Ghats) India. Geocarto Int. 15(2): 71-77.  https://doi.org/10.1080/10106040008542155

Google Scholar

30. Rajput, S.S., Sulkha, N.K., Gupta, V.K. and Jain, J.D. (1996). Timber Mechanics: Strength Classification and Grading of Timber. ICFRE Publication-38, ICFRE, Dehra Dun, India. p. 103

31. Ramachandran, A., Jayakumar, S., Haroon, R.M., Bhaskaran, A. and Arockiasamy, D.I. (2007). Carbon sequestration: estimation of carbon stock in natural forests using geospatial technology in the Eastern Ghats of Tamil Nadu, India. Curr. Sci., 92(3): 323-331

Google Scholar

32. Ravindranath, N.H., Somashekar, B.S. and Gadgil, M. (1997). Carbon flows in Indian forests. Climatic Change. 35: 297-320.  https://doi.org/10.1023/A:1005303405404

Google Scholar

33. Rawat, G.S. (1997). Conservation status of forest and Wildlife in the Eastern Ghats, India. Environ. Conservation. 24(4): 307-315.  https://doi.org/10.1017/S0376892997000416

Google Scholar

34. Reddy, C.S. and Ugle, P. (2008). Tree species diversity and distribution patterns in tropical forest of Eastern Ghats, India: a case study. Life Sci. J. 5(4): 87-93

Google Scholar

35. Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood Densities of Tropical Tree Species. U.S.Department of Agriculture, Forest Service, New Orleans, LA.  https://doi.org/10.2737/SO-GTR-88

Google Scholar

36. Richardson, J.R. and Poloczanska, E.S. (2008). Underresourced, under threat. Science. 320: 1294-1295.  https://doi.org/10.1126/science.1156129

Google Scholar

37. Rolim, S.G., Jesus, R.M., Nascimento, H.E.M., Couto, H.T.Z. and Chambers, J.C. (2005). Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia. 142: 238-246.  https://doi.org/10.1007/s00442-004-1717-x

Google Scholar

38. Sarmiento, G., Pinillos, M. and Garay, I. (2005). Biomass variability in tropical American lowland rainforests. Ecotropicos. 18(1): 1-20

Google Scholar

39. Sahu, S.C., Dhal, N.K., Reddy, C.S., Pattanaik, C. and Brahmam, M. (2007). Phytosociological study of tropical dry deciduous forest of Boudh district, Orissa, India. Res. J. For. 1(2): 66-72.  https://doi.org/10.3923/rjf.2007.66.72

Google Scholar

40. Singh, S. and Dadhwal, V.K. (2008). Vegetation Carbon Pool Assessment in India (Field Mannual). Department of Space, Government of India, Dehra Dun, India

Google Scholar

41. Singh, L. and Singh, J.S. (1991). Species structure, dry matter dynamics and carbon flux of a tropical dry forest in India. Ann. Bot., 68: 263-273.   https://doi.org/10.1093/oxfordjournals.aob.a088252

Google Scholar

42. Singh, L., Yadav, D.K., Pagare, P., Gosh, L. and Thakur, B.S. (2009). Impact of land use changes on species structure, biomass and carbon storage in tropical deciduous forest and converted forest. Int. J. Ecol. and Environ. Sci. 35(1): 113-119

Google Scholar

43. Sundarapandian, S.M. and Swamy, P.S. (1996). Fine root biomass distribution and productivity patterns under open and closed canopies of tropical forest ecosystems at Kodayar in Western Ghats, South India. For. Ecol. and Manag., 86: 181-192.  https://doi.org/10.1016/S0378-1127(96)03785-1

Google Scholar

44. Swamy, S.L., Dutt, C.B.S., Murthy, M.S.R., Mishra, A. and Bargali, S.S. (2010). Floristics and dry matter dynamics of tropical wet evergreen forests of Western Ghats, India. Curr. Sci., 99(3): 353-364

Google Scholar

45. Urquiza-Haas, T., Dolman, P.M. and Peres, C.A. (2007). Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: effects of forest disturbance. For. Ecol. and Manag., 247: 80-90.  https://doi.org/10.1016/j.foreco.2007.04.015

Google Scholar

46. Vieira, S., Camargo, P.B., Selhorst, D., Silva, R., Hutyra, L., Chambers, J.Q., Brown, I.F., Higuchi, N., Santos, J., Wofsy, S.C., Trumbore, S.E. and Martinelli, L.A. (2004). Forest structure and carbon dynamics in Amazonia tropical rain forests. Oecologia. 140: 468-479.   https://doi.org/10.1007/s00442-004-1598-z

Google Scholar

47. WWF-IUCN (1995). Centers of Plant Diversity: A Guide and Strategy for Their Conservation. Volume 2: Asia, Australia and the Pacific, (Edited by Davis, S.D., V.H. Heywood & A.C. Hamilton). Worldwide Fund for Nature (WWF) and IUCN (The World Conservation Union), Cambridge, UK

Google Scholar

About this article

How to cite

Rao, V.S., Prasad, K., Veeranjaneyulu, D., Priyadarsini, P. and Rao, B.R.P., 2013. Above-Ground Biomass and Carbon Stocks in Tropical Deciduous Forests of Nallamalais, Eastern Ghats, Andhra Pradesh, India. Indian Journal of Forestry, 36(1), pp.9-16. https://doi.org/10.54207/bsmps1000-2013-287L5O

Publication History

Manuscript Published on 01 March 2013

Share this article

Anyone you share the following link with will be able to read this content: