Review Article | Published: 20 June 2019

Impact of Drought Stress on Forest Trees – A Review

Shephali Sachan and Avinash Jain

Indian Journal of Forestry | Volume: 42 | Issue: 2 | Page No. 185-190 | 2019
DOI: https://doi.org/10.54207/bsmps1000-2019-49CG2U | Cite this article

Abstract

Drought stress is creating dangerous situation worldwide. The impact of stress is not only the deficiency of water but it also leads to the deficiency and losses of everything which are linked to the water resources directly or indirectly. Drought stress disturbs the normal biochemical, molecular and physiological processes, affecting the morphology of plant. As a result the plant is either unable to live on abrupt changes or learn to avoid/tolerate the variation in the environment. The results vary species to species depending on genotype, frequency and time period of drought stress. There is need of screening various tree species for getting information related to their ability and capacity level of susceptibility, tolerance and avoidance behaviour with the further goal of their plantation in the various nurseries in order to rehabilitate the drought prone areas, wastelands and to increase intangible and tangible benefits.

Keywords

Drought, Forest, Biochemical, Molecular, Physiological, Morphology, Tolerance

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

References

1. Akhtar, I. and Nazir, N. (2013). Effect of waterlogging and drought stress in plants International Journal of Water Resources and Environmental Sciences. 2(2):34-40

Google Scholar

2. Amarjit, K.N., Kumari, S. and Sharma, D.R. (2005). In vitro selection and characterization of water stress tolerant cultures of bell pepper Indian Journal of Plant Physiology. 10(1):14-19

Google Scholar

3. Aranda, I., Alía, R., Ortega, U., Dantas, A. and Majada, J. (2010). Intra-population variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in four maritime pine (Pinus pinaster L.) populations Tree Genetic Genomes. 6:169-170 https://doi.org/10.1007/s11295-009-0238-5

Google Scholar

4. Arend, M., Kuster, T., Günthardt-Goerg, M.S. and Dobbertin, M. (2011). Provenance-specific growth responses to drought and air warming in three European oak species. (Quercus robur, Q. petraea and Q. pubescens) Tree Physiology. 31:287-297 https://doi.org/10.1093/treephys/tpr004

Google Scholar

5. Arndt, S.K., Clifford, S.C., Wanek, W., Jones, H.G. and Popp, M. (2001). Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress Tree Physiology. 21:705-715 https://doi.org/10.1093/treephys/21.11.705

Google Scholar

6. Ashraf, M., Ashraf, M.Y., Khaliq, A. and Rha, E.S. (2004). Growth and leaf gas exchange characteristicsin Dalbergia sissoo Roxb. and D. latifolia Roxb. under water deficit Photosynthetica. 42(1):157-160 https://doi.org/10.1023/B:PHOT.0000040585.31593.38

Google Scholar

7. Bassman, J.H. and Zwier, J.C. (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones Tree Physiology. 8:145-159 https://doi.org/10.1093/treephys/8.2.145

Google Scholar

8. Beede, R.H. and Goldhamer, D.A. (1994). Olive Irrigation Management, in olive production manual, University of California, Publication. 3353, pp. 61-68

Google Scholar

9. Bigler, C., Braker, O.U., Bugmann, H., Dobbertin, M. and Rigling, A. (2006). Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland Ecosystem. 9:330-343 https://doi.org/10.1007/s10021-005-0126-2

Google Scholar

10. Bolat, I., Dikilitas, M., Ercisli, S. and Ikinci, A. (2014). Effect of water stress on some morphological, physiological and biochemical characteristics and bud success on Apple and Quince rootstocks The Scientific World Journal 1-8 https://doi.org/10.1155/2014/769732

Google Scholar

11. Brendel, O., Pot, D., Plomion, C., Rozenberg, P. and Guehl, J.M. (2002). Genetic parameters and QTL analysis of d13C and ring width in maritime pine Plant Cell Environment. 25:945-953 https://doi.org/10.1046/j.1365-3040.2002.00872.x

Google Scholar

12. Ceulemans, R. and Impens, I. (1980). Leaf gas exchange processes and related characteristics of seven poplar clones under laboratory conditions Canadian Journal of Forest Research. 10:429-435 https://doi.org/10.1139/x80-070

Google Scholar

13. Chang, S., Puryear, J.D., Dias, M.A.D.L., Funkhouser, E.A., Newton, R.J. and Cairney, J. (1996). Gene expression under water deficit in loblolly pine (Pinus taeda): isolation and characterization of cDNA clones Physiologia Plantarum. 97:139-148 https://doi.org/10.1034/j.1399-3054.1996.970121.x

Google Scholar

14. Comita, L.S. and Engelbrecht, B.M.J. (2014). Drought as a driver of tropical tree species regeneration dynamics and distribution patterns. In: Forests and Global Change (Coomes, D.A., Burslem, D.F.R.P. and Simonson, W.D. eds.) Cambridge University Press. British Ecological Society, London, U.K., pp. 261-308 https://doi.org/10.1017/CBO9781107323506.013

Google Scholar

15. Contin, D.R., Soriani, H.H., Hernandez, I., Furriel, R.P.M., Munne-Bosch, S. and Martinez, C.A. (2014). Antioxidant and photoprotective defenses in response to gradual water stress under low and high irradiance in two Malvaceae tree species used for tropical forest restoration Trees. 28(6) https://doi.org/10.1007/s00468-014-1079-x

Google Scholar

16. Cregg, B.M. and Zhang, J.W. (2001). Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress Forest Ecology and Management. 154:131-139 https://doi.org/10.1016/S0378-1127(00)00626-5

Google Scholar

17. Crespo, S.C., Moreno-Chacón, A.L., Rojas, A. and Melgarejo, L.M. (2011). Principal component analysis of changes due to water stress for some osmolytes, pigments and antioxidant enzymes in Gmelina arborea Robx. leaves from trees planted in Northern Colombia Journal of the Brazilian Chemical Society. 22(12):2275-2280 https://doi.org/10.1590/S0103-50532011001200006

Google Scholar

18. Donaldson, D.R., Hasey, J.K. and Davies, W.B. (1983). Eucalypts outperform other species in salty flooded soils California Agriculture. 37:20-21

Google Scholar

19. El Rabey, H.A., Al-Malki, A.L., Abulnaja, K. O. and Rohde, W. (2015). Proteome analysis for understanding abiotic stress (salinity and drought) tolerance in Date Palm (Phoenix dactylifera L.) International Journal of Genomics 1-11 https://doi.org/10.1155/2015/407165

Google Scholar

20. Eveno, E., Collada, C., Guevara, M.A., Léger, V., Soto, A., Díaz, L. and Léger, P., González-Martínez, S.C., Cervera, M.T., Plomion, C. and Garnier-Géré, P.H. (2008). Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses Molecular Biology and Evolution. 25:417-437 https://doi.org/10.1093/molbev/msm272

Google Scholar

21. Farooq, M., Hussain, M. and Siddique, H.M.K. (2014). Drought Stress in wheat during flowering and grain-filling periods Critical Reviews in Plant Sciences. 33(4):331-349 https://doi.org/10.1080/07352689.2014.875291

Google Scholar

22. Fereres, E. (1995). El Regio Del Olivar, Proceedings of the VII Simposio Cientifico-Tecnico Expoliva, pp. 18

Google Scholar

23. Ferreira, Lacerda, Costa and Filho. (2015). Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest Acta Botanica Brasilica. 29(3):375-382 https://doi.org/10.1590/0102-33062014abb0045

Google Scholar

24. Gallé, A., Haldimann, P. and Feller, U. (2007). Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery New Phytologist. 174:799-810 https://doi.org/10.1111/j.1469-8137.2007.02047.x

Google Scholar

25. Grote, R., Gessler, A., Hommel, R., Poschenrieder, W. and Priesack, E. (2016). Importance of tree height and social position for drought-related stress on tree growth and mortality Trees 30(5):1467-1482 https://doi.org/10.1007/s00468-016-1446-x

Google Scholar

26. Guy, R.D. and Holowachuk, D.L. (2001). Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud.: relationship to environment, climate of origin, and growth potential Canadian Journal of Botany. 79:274-283 https://doi.org/10.1139/b01-001

Google Scholar

27. Harfouche, A., Meilan, R. and Altman, A. (2014). Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement Tree Physiology. 34:1181-1198 https://doi.org/10.1093/treephys/tpu012

Google Scholar

28. Hu, Y., Burucs, Z., Tucher, S.V. and Schmidhalter, U. (2007). Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings Environmental and Experimental Botany. 60:268-275 https://doi.org/10.1016/j.envexpbot.2006.11.003

Google Scholar

29. Husen, A. (2010). Growth characteristics, physiological and metabolic responses of Teak (Tectona Grandis Linn. F.) clones differing in rejuvenation capacity subjected to drought stress Silvae Genetica. 59(2):124-136 https://doi.org/10.1515/sg-2010-0015

Google Scholar

30. Immanuel, R.R., Ganapathy, M., Thirupathi, M., Sudhakar, G.V.R. and Nambi, J. (2019). Physiological responses of multipurpose tree seedlings to induced water stress Plant Archives. 19(1):444-447

Google Scholar

31. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R. and Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition International Journal of Agriculture and Biology. 11:100-105

Google Scholar

32. Khera, N. and Shing, R.P. (2005). Germination of some multipurpose tree species in five provenances in response to variation in light temperature, substrate and water stress Tropical Ecology. 46(2):203-217

Google Scholar

33. Kozlowski, T.T., Kramer, P.J. and Pallardy, S.G. (1991). The physiological ecology of woody plants Academic Press, San Diego, pp. 657 https://doi.org/10.1016/B978-0-12-424160-2.50005-7

Google Scholar

34. Larcher, W. (1987). Stress bei Pflanzen Naturwissenschaften 74:158-167 https://doi.org/10.1007/BF00372919

Google Scholar

35. Li, C., Berninger, F., Koskela, J. and Sonninen, E. (2000b). Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin Australian Journal of Plant Physiology. 27:231-238 https://doi.org/10.1071/PP99056

Google Scholar

36. Lima, W. P. (1984). The Hydrology of Eucalyptus Fortests in Australia Review IPEL, Piracical

Google Scholar

37. Lindhauer, M.G. (1995). Influence of K nutrition and drought and water stressed sunflower plants differing in K nutrition Journal of Plant Nutrition. 10:1965-1973 https://doi.org/10.1080/01904168709363742

Google Scholar

38. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance Trends in Plant Science. 7:405-410 https://doi.org/10.1016/S1360-1385(02)02312-9

Google Scholar

39. Monclus, R., Dreyer, E., Villar, M., Delmotte, F.M., Delay, D., Petit, J.M., Barbaroux, C., Le Thiec, D., Bréchet, C. and Brignolas, F. (2006). Impact of drought on productivity and water-use efficiency in 29 genotypes of Populus deltoides x Populus nigra New Phytol 169:765-777 https://doi.org/10.1111/j.1469-8137.2005.01630.x

Google Scholar

40. Nautiyal, S., Badola, H.K., Pal, M. and Negi, D.S. (1994). Plant responses to water stress: changes in growth, dry matter production, stomatal frequency and leaf anatomy Biologia Plantarum. 36:91 https://doi.org/10.1007/BF02921275

Google Scholar

41. Okushima, Y., Koizumi, N., Kusano, T. and Sano, H. (2000). Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins Plant Molecular Biology 42:479-488 https://doi.org/10.1023/A:1006393326985

Google Scholar

42. Palta, J.P. (2000). Stress Interactions at the Cellular and Membrane Levels Horticulture Science. 25(11): 1377 https://doi.org/10.21273/HORTSCI.25.11.1377

Google Scholar

43. Perdiguero, P., Collada, C., Barbero, M.C., García-Casado, G., Cervera, M.T. and Soto, A. (2012). Identification of water stress genes in Pinus pinaster Ait. by controlled progressive stress and suppression-subtractive hybridization Plant Physiology and Biochemistry. 50:44-53 https://doi.org/10.1016/j.plaphy.2011.09.022

Google Scholar

44. Pirasteh-Anosheh, H., Saed-Moucheshi, A., Pakniyat, H. and Pessarakli, M. (2016). Stomatal responses to drought stress. In: Water Stress and Crop Plants: A Sustainable Approach (P. Ahmad, ed.) John Wiley & Sons, Hoboken, United States, pp. 24-40 https://doi.org/10.1002/9781119054450.ch3

Google Scholar

45. Rao, P.B., Kaur, A. and Tewari, A. (2008). Drought resistance in seedlings of five important tree species in tarai region of Uttarakhand Tropical Ecology. 49:43-52

Google Scholar

46. Reddy, A.R., Chiatanya, K.V. and Vivekanandan, M. (2004). Drought induced responses of photosynthesis and antioxidant metabolism in higher plants Journal of Plant Physiology. 161(11):1189-1202 https://doi.org/10.1016/j.jplph.2004.01.013

Google Scholar

47. Reich, P.B. and Borchert, R. (1982). Phenology and ecophysiology of the tropical tree Tabebuia neochrysantha (Bignoniaceae) Ecology 63: 294-299 https://doi.org/10.2307/1938945

Google Scholar

48. Rönnberg-Wästljung, A.C., Glynn, C. and Weih, M. (2005). QTL analysis of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes Theoretical and Applied Genetics. 110:537-549 https://doi.org/10.1007/s00122-004-1866-7

Google Scholar

49. Rosero, C., Argout, X., Ruiz, M. and Teran, W. (2011). A drought stress transcriptome profiling as the first genomic resource for white teak Gamhar (Gmelina arborea Roxb) and related species. In: Proceedings: BMC, 5(Suppl 7):178 https://doi.org/10.1186/1753-6561-5-S7-P178

Google Scholar

50. Sastry, A., Guha, A. and Barua, D. (2018). Leaf thermotolerance in dry tropical forest tree species: relationships with leaf traits and effects of drought AoB Plants 10(1): plx070 https://doi.org/10.1093/aobpla/plx070

Google Scholar

51. Selye, H. (1936). A syndrome produced by diverse nocuous agents Nature. 32:138 https://doi.org/10.1038/138032a0

Google Scholar

52. Shao, H.B., Chu, L.Y., Jaleel, C.A. and Zhao, C.X. (2008). Water-deficit stress-induced anatomical changes in higher plants Comptes Rendus Biologies. 54(3):215-225 https://doi.org/10.1016/j.crvi.2008.01.002

Google Scholar

53. Sneha, C., Santhoshkumar, A.V. and Sunil, K.M. (2012). Effect of controlled irrigation on physiological and biometric characteristics in teak Journal of Stress Physiology & Biochemistry 8(3):196-202

Google Scholar

54. Street, N.R., Skogstrom, O., Sjodin, A., Tucker, J., Rodriguez-Acosta, M., Nilsson, P., Jansson, S. and Taylor, G. (2006). The genetics and genomics of the drought response in Populus Plant Journal. 48:321-341 https://doi.org/10.1111/j.1365-313X.2006.02864.x

Google Scholar

55. Suzuki, N., Rivero, R.M., Shulaev, V., Blumwald, E. and Mittler, R. (2014). Abiotic and biotic stress combinations New Phytologist. 203:32-43 https://doi.org/10.1111/nph.12797

Google Scholar

56. Tangu, N.A. (2014). Effects on Plant Morphology of drought in olive Turkish Journal of Agricultural and Natural Sciences. 1:900-904

Google Scholar

57. Teixeira, J., Missiaggia, A., Dias, D., Scarpinati, E., Viana, J., Paula, N., Paula, R. and Bonine, C. (2011). QTL analyses of drought tolerance in Eucalyptus under two contrasting water regimes. In: Proceedings:BMC, 5:40 https://doi.org/10.1186/1753-6561-5-S7-P40

Google Scholar

58. Tschaplinski, T.J., Tuskan, G.A., Sewell, M.M., Gebre, G.M., Todd, D.E. and Pendley, C.D. (2006). Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments Tree Physiology. 26:595-604 https://doi.org/10.1093/treephys/26.5.595

Google Scholar

59. Van Mantgem, P.J., Stephenson, N.L., Byrne, J.C., Daniels, L.D., Franklin, J.F., Fule, P.Z., Harmon, M.E., Larson, A.J., Smith, J.M., Taylor, A.H. and Veblen, T.T. (2009). Widespread increase of tree mortality rates in the western united states Science 323:521-524 https://doi.org/10.1126/science.1165000

Google Scholar

60. Voltas, J., Chambel, M.R., Prada, M.A. and Ferrio, J.P. (2008). Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests Trees - Structure and Function 22:759-769 https://doi.org/10.1007/s00468-008-0236-5

Google Scholar

61. Waraich, E.A., Ahmad, R., Saifullah, Ashraf, M. Y. and Ehsanullah. (2011). Role of mineral nutrition in alleviation of drought stress in plants Australian Journal of Crop Science 5(6):764-777

Google Scholar

62. Xu, Z. and Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass Journal of Experimental Botany. 59:3317-3325 https://doi.org/10.1093/jxb/ern185

Google Scholar

63. Yigit, B.N., Sevik, H., Cetin, M. and Kava, N. (2016). Determination of the effect of drought stress on the seed germination in some plant species. In: Water stress in plants IntechOpen, pp. 43-62 https://doi.org/10.5772/63197

Google Scholar

64. Zhang, J.W., Marshall, J.D. and Jaquish, B.C. (1993). Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii Oecologia 93:80-87 https://doi.org/10.1007/BF00321195

Google Scholar

About this article

How to cite

Sachan, S. and Jain, A., 2019. Impact of Drought Stress on Forest Trees – A Review. Indian Journal of Forestry, 42(2), pp.185-190. https://doi.org/10.54207/bsmps1000-2019-49CG2U

Publication History

Manuscript Published on 20 June 2019

Share this article

Anyone you share the following link with will be able to read this content: