1. Art, H.W. and Marks, P.L. (1971). A Summary table of biomass and net primary production in forest ecosystems of the world. In: Forest Biomass Studies (ed. Young H.E.). College of Life Sciences and Agricultural Experiment Station. Univ. of Maine, USA
2. Bartelink, H.H. (1997). Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L.). Ann. For. Sci., 54:39-50. https://doi.org/10.1051/forest:19970104
3. Brown, S. (2002) Measuring carbon in forests: current status and future challenges. Environ. Pollut. 116:363–372 https://doi.org/10.1016/S0269-7491(01)00212-3
4. Brown, S., Gillespie, A.J.R. and Lugo, A.E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci., 35:881-902
5. Chaturvedi, O.P. (1983). Biomass structure, productivity and nutrient cycling in Pinus roxburghii forest. Thesis submitted for the degree of Doctor of Philosophy in Botany in Department of otany, Kumaun University, Naini Tal-263002. pp.347
6. Chhabra, A., Palria, S. and Dadhwal, V.K. (2002). Growing stock based forest biomass estimate for India. Biomass and Bioenergy, 22(3):187-194. https://doi.org/10.1016/S0961-9534(01)00068-X
7. Fukuda, M., Iehara, T. and Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. For. Ecol. & Manage., 184:1–16 https://doi.org/10.1016/S0378-1127(03)00146-4
8. FAO (1997). State of the world’s forests. Food and Agricultural Organization of the United Nations
9. Hall, C.A.S. and Uhlig, J. (1991). Refining estimates of carbon release from tropical land use change. Canadian Journal of Forestry Research, 21:118-131. https://doi.org/10.1139/x91-016
10. IPCC (2006). Intergovernmental Panel on Climate Change. Guidelines for National Greenhouse Gas Inventories [http://www.ipcc.ch].
11. Kilbride, C.M., Byrne, K.A. and Gardiner, J.J. (1999). Carbon sequestration and Irish forests. COFORD, Dublin
12. Lehtonen, A., Mäkipää, R., Heikkinen, J., Sievänen, R. and Liski, J. (2004). Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. & Manage., 188(1-3)):211-224. https://doi.org/10.1016/j.foreco.2003.07.008
13. Lehtonen, A., Cienciala, E., Tatarinov, F. and Mäkipää, R. (2007). Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Ann. For. Sci. 64, 133–140. https://doi.org/10.1051/forest:2006097
14. Levy, P.E., Hale, S.E. and Nicoll, B.C. (2010). Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry, 77(5):421-430. https://doi.org/10.1093/forestry/77.5.421
15. Liski, J., Perruchoud, D. and Karjalainen, T. (2002). Increasing carbon stocks in the forest soils of Western Europe. For. Ecol. & Manage., 169:163-179. https://doi.org/10.1016/S0378-1127(02)00306-7
16. Milne, R., Brown, T.A.W. and Murray, T.D. (1998). The effect of geographical variation of planting rate on the uptake of carbon by new forests of Great Britain. Forestry, 71:297–309 https://doi.org/10.1093/forestry/71.4.297
17. Negi, J.D.S. (1984). Biological productivity and cycling of nutrients in managed and man-made ecosystems. Ph. D. Thesis, Garhwal Univ. Srinagar Garhwal, UP
18. Ovington, J.D. (1962). Quantitative ecology and the woodland ecosystem concept. In: Advances in Ecological Research (ed. J.B. Cragg), Academic Press, New York, 1:103-192. https://doi.org/10.1016/S0065-2504(08)60302-5
19. Rodin, L.E. and Bazilevich, N.I. (1967). Production and mineral cycling in a terrestrial vegetation. Oliver anf boyd. Edinburgh, London
20. Sanquetta, C.R., Corte, A.P. and Silva, F.D. (2011). Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6:6. https://doi.org/10.1186/1750-0680-6-6
21. Schroeder, P., Brown, S., Mo, J., Birdsey, R. and Cieszewski, C. (1997). Biomass estimation for temperate broadleaf forests of the United States using inventory data. For. Sci., 43(3):424-434
22. Shoene, D. (2002) Terminology in assessing and reporting forest carbon change. In: Second expert meeting on harmonizing forest-related definitions for use by various stakeholders. FAO, Rome
23. Soares, P. and Tome, M. (2004): Analysis of the effectiveness of biomass expansion factors to estimate stand biomass. In: Modeling Forest Production. (H. Hasenauer and A. Makela eds.), Proc. Conf. Vienna, 19-21 April (Department of Forest and Soil Sciences, BOKU University of Natural Resources and Applied Life Sciences, Vienna
24. Ter-Mikaelian, M.T. and Korzukhin, M.D. (1997). Biomass equations for sixty-five North American tree species. For. Ecol. & Manage., 97:1-24. https://doi.org/10.1016/S0378-1127(97)00019-4
25. Tobin, B. and Nieuwenhuis, M., 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong) Carr. ) in Ireland. Eur. J. For. Res. 126, 189–196. https://doi.org/10.1007/s10342-005-0105-3
26. Whittaker, R.H. and Woodwell, G.M. (1968). Structure, production and diversity of the oak pine forest at Brook Haven, New York. J. Ecol. 57:155-174. https://doi.org/10.2307/2258214