1. Atzberger, C., Eilers, P.H.C. (2011). A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. Int J Digit Earth. 4 (5) https://doi.org/10.1080/17538947.2010.505664
2. Brown, J.C., Kastens, J.H., Coutinho, A.C., Victoria, D. deC., Bishop, C.R. (2013). Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens Environ. 130 https://doi.org/10.1016/j.rse.2012.11.009
3. Chen, Jun., Chen, Jin., Liao, A., Cao, X., Chen, L., Chen, X., He C, Han G, Peng, S., Lu, M. (2014). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J Photogramm Remote Sens [Internet]. 103:7-27 https://doi.org/10.1016/j.isprsjprs.2014.09.002
4. Dai, W., Selesnick, I., Rizzo, J.R., Rucker, J., Hudson, T. (2017). A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades. J Vis. 17 (9) :10 https://doi.org/10.1167/17.9.10
5. Friedl, M.A., Gopal, S., Muchoney, D., Strahler, A.H. (2002). Global land cover mapping from MODIS: algorithm design and preliminary results. Remote Sens Environ. 83. (1,2) 287-302 https://doi.org/10.1016/S0034-4257(02)00078-0
6. Geerken, R., Zaitchik, B., Evans, J.P. (2005). Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int J Remote Sens. 26:5535-5554 https://doi.org/10.1080/01431160500300297
7. Jensen, J.R. (2014). Remote sensing of the environment: an earth resource perspective. 2nd edition, Pearson India, Noida
8. Jia, K., Liang, S., Zhang, L., Wei, X., Yao, Y., Xie, X. (2014). Forest cover classification using Landsat ETM+ data and time series MODIS NDVI data. Int J Appl Earth Obs Geoinf [Internet]. 33:32-38 https://doi.org/10.1016/j.jag.2014.04.015
9. Jin, Chen., Per, Jonsson., Masayuki, Tamura., Zhihui, Gu., Bunkei, M., Eklundah, L. (2014). A simple method for reconstructing a high Savitzky- Golay filter. Remote sen. Environ 91, (3-4):332-344 quality NDVI time-series data set based on the
10. Jönsson, P., Eklundh, L. (2004). TIMESAT-a program for analyzing time-series of satellite sensor data. Comput Geosci. 30:833-845 https://doi.org/10.1016/j.cageo.2004.05.006
11. Kogan, F.N. (2000). Satellite-observed sensitivity of world land ecosystems to El Niño/La Niña. Remote Sens Environ. 74 (3):445-462 https://doi.org/10.1016/S0034-4257(00)00137-1
12. Li, K.J., B.W., Q. (2013). Crop classification using HJ satellite multispectral data in the North China Plain. J Appl Remote Sens. 7 https://doi.org/10.1117/1.JRS.7.073576
13. Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., Worthy, L.D. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ. 105:142-154 https://doi.org/10.1016/j.rse.2006.06.018
14. Schriever, J.R., Congalton, R.G. (1995). Evaluating Seasonal Variability as an Aid to Cover-Type Mapping from Landsat Thematic Mapper Data in the Northeast. Photogramm Eng Remote Sensing. 61(3):321-327
15. Shao, Y., Lunetta, R.S., Wheeler, B., Iiames, J.S., Campbell, J.B. (2016). An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens Environ. 174:258-265 https://doi.org/10.1016/j.rse.2015.12.023
16. Stöckli, R., Vidale, P.L. (2004). European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int J Remote Sens. 25 (17) https://doi.org/10.1080/01431160310001618149
17. White, M.A., Thornton, P.E., Running, S.W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem Cycles https://doi.org/10.1029/97GB00330
18. Xiao X, Boles S, Liu J, Zhuang D, Liu M. (2002). Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens Environ. 82:335-348 https://doi.org/10.1016/S0034-4257(02)00051-2
19. Zhang, X., Sun, R., Zhang, B., Tong, Q. (2008). Land cover classification of the North China Plain using MODIS_EVI time series. ISPRS J Photogramm Remote Sens. 63:476-484 https://doi.org/10.1016/j.isprsjprs.2008.02.005