Research Article | Published: 30 September 2023

Ecoregion level niche specific habitat prediction of threatened Syzygium caryophyllatum (Myrtaceae) for reintroduction and ecorestoration

Devika M.A. and K. H. Amitha Bachan

Indian Journal of Forestry | Volume: 46 | Issue: 2 | Page No. 78-86 | 2023
DOI: https://doi.org/10.54207/bsmps1000-2023-663HOX | Cite this article

Abstract

Syzygium caryophyllatum (L.) Alston is a medium-sized threatened tree that mainly occupies the low-elevation evergreen patches of the Western Ghats (India) - Sri Lanka biodiversity hotspot. The present study predicts the potential habitats of Syzygium caryophyllatum at the ecoregion level for prioritising its conservation and restoration area. The bioclimatic species distribution modelling (SDM) using 19 bioclimatic parameters of World Clim used here to elucidate fundamental niche of the species. The standardised vegetation and landuse layer used in this model for the prediction of potential niche of the species incorporating biotic factors. The incorporation of standardised vegetation layer for the inclusion of Eltonian factors along with MaxEnt based Ecological Niche Modelling helped to refine its predicted area from 10,824 km2 to 8,595 km2 within the Western Ghats. The model adopted with the MaxEnt SDM with additional biotic layers to better accommodate the Grinnellian and Eltonian niche factors. The ecoregion level prediction for the potential habitat of the threatened tree species provides adequate information for the niche specific conservation and ecorestoration planning ensuring ecosystem-based approach (EbA).

Keywords

Conservation, Distribution, MaxEnt, Syzygium, Vulnerable, Western Ghats

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Adhikari, D., Barik, S.K. and Upadhaya, K., 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, pp.37-43. https://doi.org/10.1016/j.ecoleng.2011.12.004

Google Scholar

2. Adhikari, D., Tiwary, R., Singh, P.P., Upadhaya, K., Singh,B., Haridasan, K.E., Bhatt, B.B., Chettri, A. and  Barik, S.K., 2019. Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya, Journal of Environmental Management, 243, pp.299-307.  https://doi.org/10.1016/j.jenvman.2019.05.036

Google Scholar

3. Amitha Bachan, K.H., 2010. Riparian Flora of the Chalakudy River Basin and Its Ecological Significance. Ph. D. Thesis, University of Calicut, Kerala.

Google Scholar

4. Amitha Bachan, K.H. and Devika, M.A., 2022. Niche profiling and niche modelling of endangered Cryptocarya anamalayana endemic to Western Ghats for conservation and restoration. Imperiled: The Encyclopedia of Conservation. Elsevier.  https://doi.org/10.1016/B978-0-12-821139-7.00225-7

5. Amitha Bachan, K.H. and Devika, M.A., 2023. Modified Niche Modelling for Niche Specific Conservation and Ecorestoration Planning of Threatened Tree Species: A Case Study on Four Goniothalamus Species in the Western Ghats, 09 May 2023, PREPRINT at Research Square. https://doi.org/10.21203/rs.3.rs-2878456/v1

Google Scholar

6. Amitha Bachan, K.H., Pooja, S. and Devika, M.A., 2022. Riparian Forest of Western Ghats, an Endangered Ecosystem. In Della Sala, D.A., Goldstein, M.I. (eds), Imperiled: The Encyclopedia of Conservation, vol. 2. Elsevier, pp. 100-113. https://doi.org/10.1016/B978-0-12-821139-7.00207-5

Google Scholar

7. Barnosky, A., Matzke, N., Tomiya, S., Guinevere O.U. Swartz, W.B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., 2011.. Has the Earth’s sixth mass extinction already arrived?. Nature, 471, pp.51-57.  https://doi.org/10.1038/nature09678

8. Benham, P.M., Beckman, E.J., Du Bay, S.G., Flores, L.M., Johnson, A.B., Lelevier, M.J., Schmitt, C.J., Wright, N.A. and Witt, C.C., 2011. Satellite imagery reveals new critical habitat for Endangered bird species in the high Andes of Peru. Endan- gered Species Res. 13, pp.145-157. https://doi.org/10.1007/s40011-018-1044-3

Google Scholar

9. Bhandari, M.S., Meena, R.K., Shankhwar, R., 2020. Prediction mapping through MaxEnt modeling paves the way for the conservation of Rhododendron arboreum in Uttarakhand Himalayas. J Indian Soc Remote Sens., 48, pp.411-422.  https://doi.org/10.1007/s12524-019-01089-0

Google Scholar

10. Braunisch, V. and Suchant, R., 2007. A model for evaluating the ‘habitat potential’ of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning. - Wildl. Biol. 13, pp.21-33.  https://doi.org/10.2981/0909-6396(2007)13[21:AMFETH]2.0.CO;2

Google Scholar

11. Brummitt, N., Bachman, S., Lughadha, E.M.N., Moat, J.,  Albuquerque, S., Aletrari, E., Andrews, A. K., Atchison, G. et al., 2010. Plants Under Pressure a Global Assessment The First Report of the IUCN Sampled Red List Index for Plants. Royal Botanic Gardens, Kew, UK.

Google Scholar

12. Busby, J.R., 1991. Bioclimate Analysis and Prediction System. Plant Protection Quarterly, 6 (1).

13. Bustamante, M.M.C., Silva, J.S., Scariot, A., Sampaio, A.B., Mascia, D.L., Garcia, E., Sano, E., Fernandes, G.W., Durigan, G., Roitman, I., Figueiredo, I., Rodrigues, R.R., Pillar, V.D., Oliveira, A.O de,  Malhado, A.C., Alencar, A., Vendramini, A., Padovezi, A., Carrascosa, H., Freitas, J., Siqueira, J.A., Shimbo, J., Generoso, L.G., Tabarelli, M., Biderman, R., Salomão, R. de P., Valle, R., Junior, B., and Nobre, C., 2019. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig Adapt Strateg Glob Change, 24, pp.1249-1270.  https://doi.org/10.1007/s11027-018-9837-5

Google Scholar

14. Carpenter, G., Gillison, A. and Winter, J., 1993. Domain: A Flexible Modelling Procedure for Mapping Potential Distributions of Plants and Animals. Biodiversity & Conservation, 2, pp.667-680.  https://doi.org/10.1007/BF00051966

Google Scholar

15. Chandra, N., Rai, I.D., Mishra, A.P., Dwivedi, S.K., Kotiya, A., Tiwari, U.K. and Singh, G., 2022. Assessing potential habitats and populations of selected medicinal herbs in Alpine areas of Uttarakhand, Western Himalaya. Indian Journal of Forestry, 45(3), pp.144-155.  https://doi.org/10.54207/bsmps1000-2023-ITRFNL

16. de Araújo, C.B., Marcondes-Machado, L.O. and Costa, G.C., 2014. The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography. 41, pp.513-523. https://doi.org/10.1111/jbi.12234

Google Scholar

17. Devika, M.A. and Amitha Bachan, K.H., 2021. Niche profiling, Niche modelling and reassessment of three IUCN red listed endemic tree species for conservation and ecorestoration. Masters Thesis, University of Calicut, Kerala.

18. Devika M.A. and Amitha Bachan, K.H.  2023a. Niche model based conservation and ecorestoration area prediction of threatened Prioria pinnata (Fabaceae) and conservation implication on IUCN status, Acta Ecologica Sinica, Elsevier 43(6), pp.925-1148.  https://doi.org/10.1016/j.chnaes.2023.10.002

Google Scholar

19. Devika, M.A. and Amitha Bachan, K.H., 2023b. Syzygium caryophyllatum. The IUCN Red List of Threatened Species 2024. (draft assessment In press).

20. Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC. M.,  Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29, pp.129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

21. Ellis, E.C. and Ramankutty, N., 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment. 6(8), pp.439-446.  https://doi.org/10.1890/070062

Google Scholar

22. Elton, C.S. 1927. Animal Ecology. Sidgwick and Jackson, London.

23. Fick S.E. and Hijmans R.J., 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37(12), pp. 4302-4315. https://doi.org/10.1002/joc.5086

Google Scholar

24. Gastón, A., García-Viñas, J.I., Bravo-Fernández, A.J., López-Leiva, C., Oliet, J.A., Roig, S., and Serrada, R., 2014. Species distribution models applied to plant species selection in forest restoration: are model predictions comparable to expert opinion?. New Forests 45, pp.641-653 https://doi.org/10.1007/s11056-014-9427-7

Google Scholar

25. GBIF, 2023. GBIF Occurrence Download  https://doi.org/10.15468/dl.n6y8dg

26. Grinnell, J., 1917. The Niche relationships of the California Thrasher. Auk 34, pp.427-33.  https://doi.org/10.2307/4072271

Google Scholar

27. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25(15), pp.1965-1978. https://doi.org/10.1002/joc.1276

Google Scholar

28. Hussain, A. 2017. Conservation aspects of Syzygium travancoricum Gamble – A critically endangered species with respect to other allied species of southern Western Ghats. Thesis submitted to Manonmaniam Sundaranar University, Tirunelveli.

Google Scholar

29. Jarvis A., Reuter, H.I., Nelson, A. and Guevara, E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Available from https://srtm.csi.cgiar.org

Google Scholar

30. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., et al., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), pp.1366-1379. https://doi.org/10.1111/ddi.12096

Google Scholar

31. Manish, K., Telwala, Y., Nautiyal, D.C. and  Pandit M.K., 2016. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya. India. Model Earth Syst Environ, 2, p.92.  https://doi.org/10.1007/s40808-016-0163-1

Google Scholar

32. Miller J., 2010. Species Distribution Modeling. Geography Compass. 4(6), pp.490-509. https://doi.org/10.1111/j.1749-8198.2010.00351.x

Google Scholar

33. Naimi B., 2015. On uncertainty in species distribution modelling. ITC dissertation no. 267. University of Twente.  https://doi.org/10.3990/1.9789036538404

Google Scholar

34. Palkar, R.S., Janarthanam, M.K. and Sellappan, K., 2020. Prediction of potential distribution and climatic factors influencing Garcinia indica in the Western Ghats of India using ecological niche modeling. Natl Acad Sci Lett., 43, pp.585-591. https://doi.org/10.1007/s40009-020-00918-y

Google Scholar

35. Peterson, A.T., Soberon, J., Pearson, R.G., Anderson, R.P., Martinez-Meyer, E., Nakamura, M. and Araújo, M.B., 2011. Ecological niches and geographic distribution. Princeton University Press, Princeton, New Jersy. 3

Google Scholar

36. Peterson, A.T. and Y. Nakazawa, 2008. Environmental data sets matter in ecological niche modeling: An example with Solenopsis invicta and Solenopsis richteri. Global Ecol. Biogeog. 17, pp.135-144.  https://doi.org/10.1111/j.1466-8238.2007.00347.x

Google Scholar

37. Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190, pp.231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Google Scholar

38. Qin, A., Liu, B., Guo, Q., Bussmann, R.W., Ma, F., Jian, Z., Xu, G., Pei, S., 2017. MaxEnt modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv, 10, pp.139-146. https://doi.org/10.1016/j.gecco.2017.02.004

Google Scholar

39. Rotenberry, T.J., Preston, K.L. and Knick, S.T., 2006. GIS-based Niche modeling for mapping species habitat. Ecology. 87(6), pp.1458-1464.  https://doi.org/10.1890/0012-9658(2006)87[1458:GNMFMS]2.0.CO;2

Google Scholar

40. Royle, J.A., R.B. Chandler, C. Yackulic and  J.D. Nichols., 2012. Likelihood Analysis of Species Occurrence Probability from Presence-Only Data for Modelling Species Distributions. Methods in Ecology and Evolution. 3, pp.545-554. https://doi.org/10.1111/j.2041-210X.2011.00182.x

Google Scholar

41. Sharma, S., Arunachalam, K., Bhavsar, D. and Kala, R., 2018. Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. J Appl Res Med Aromat Plants, 10, pp.99-105. https://doi.org/10.1016/j.jarmap.2018.02.003

Google Scholar

42. Simonson, W.D., Miller, E., Jones, A., García-Rangel, S., Thornton, H. and McOwen, C., 2021. Enhancing climate change resilience of ecological restoration — A framework for action. Perspectives in Ecology and Conservation, 19(3), pp.300-310. https://doi.org/10.1016/j.pecon.2021.05.002

Google Scholar

43. Singh, R.L., 1977. India, a regional geography. National Geographical Society of India, Varanasi.

Google Scholar

44. Sobral-Souza, T., Santos, J.P., Maldaner, M.E., Lima-Ribeiro, M.S. and Ribeiro, M.C., 2021. EcoLand: A multiscale niche modelling framework to improve predictions on biodiversity and conservation, Perspectives in Ecology and Conservation. 19(3), pp.362-368. https://doi.org/10.1016/j.pecon.2021.03.008

Google Scholar

45. Stalin, N. and Sudhakar, S.P., 2018. Phenological Patterns of an Endangered Tree Species Syzygium caryophyllatum in Western Ghats, India: Implication for Conservation. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 89, pp.1275-1281.  https://doi.org/10.1007/s40011-018-1044-3

Google Scholar

46. Stalin, N. and Swamy, P.S., 2015. Prediction of suitable habitats for Syzygium caryophyllatum, an endangered medicinal tree by using species distribution modelling for conservation planning, European Journal of Experimental Biology. 5(11), pp.12-19

Google Scholar

47. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240, pp.1285-1293. https://doi.org/10.1126/science.3287615

Google Scholar

48. Thomas, C., Cameron, A., Green, R., 2004. Extinction risk from climate change. Nature 427, pp.145-148.  https://doi.org/10.1038/nature02121

Google Scholar

49. Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes , G.O. and Rouget, M., 2005. Niche-based modeling as a tool for predicting the global risk of alien plant invasions. Global Change Biology. 11, pp.2234-2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x

Google Scholar

About this article

How to cite

M.A., D. and Amitha Bachan, K.H., 2023. Ecoregion level niche specific habitat prediction of threatened Syzygium caryophyllatum (Myrtaceae) for reintroduction and ecorestoration. Indian Journal of Forestry, 46(2), pp.78-86. https://doi.org/10.54207/bsmps1000-2023-663HOX

Publication History

Manuscript Received on 01 September 2023

Manuscript Revised on 26 September 2023

Manuscript Accepted on 28 September 2023

Manuscript Published on 30 September 2023

Share this article

Anyone you share the following link with will be able to read this content: