1. Adhikari, D., Barik, S.K. and Upadhaya, K., 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, pp.37-43. https://doi.org/10.1016/j.ecoleng.2011.12.004
2. Adhikari, D., Tiwary, R., Singh, P.P., Upadhaya, K., Singh,B., Haridasan, K.E., Bhatt, B.B., Chettri, A. and Barik, S.K., 2019. Ecological niche modeling as a cumulative environmental impact assessment tool for biodiversity assessment and conservation planning: A case study of critically endangered plant Lagerstroemia minuticarpa in the Indian Eastern Himalaya, Journal of Environmental Management, 243, pp.299-307. https://doi.org/10.1016/j.jenvman.2019.05.036
3. Amitha Bachan, K.H., 2010. Riparian Flora of the Chalakudy River Basin and Its Ecological Significance. Ph. D. Thesis, University of Calicut, Kerala.
4. Amitha Bachan, K.H. and Devika, M.A., 2022. Niche profiling and niche modelling of endangered Cryptocarya anamalayana endemic to Western Ghats for conservation and restoration. Imperiled: The Encyclopedia of Conservation. Elsevier. https://doi.org/10.1016/B978-0-12-821139-7.00225-7
5. Amitha Bachan, K.H. and Devika, M.A., 2023. Modified Niche Modelling for Niche Specific Conservation and Ecorestoration Planning of Threatened Tree Species: A Case Study on Four Goniothalamus Species in the Western Ghats, 09 May 2023, PREPRINT at Research Square. https://doi.org/10.21203/rs.3.rs-2878456/v1
6. Amitha Bachan, K.H., Pooja, S. and Devika, M.A., 2022. Riparian Forest of Western Ghats, an Endangered Ecosystem. In Della Sala, D.A., Goldstein, M.I. (eds), Imperiled: The Encyclopedia of Conservation, vol. 2. Elsevier, pp. 100-113. https://doi.org/10.1016/B978-0-12-821139-7.00207-5
7. Barnosky, A., Matzke, N., Tomiya, S., Guinevere O.U. Swartz, W.B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., 2011.. Has the Earth’s sixth mass extinction already arrived?. Nature, 471, pp.51-57. https://doi.org/10.1038/nature09678
8. Benham, P.M., Beckman, E.J., Du Bay, S.G., Flores, L.M., Johnson, A.B., Lelevier, M.J., Schmitt, C.J., Wright, N.A. and Witt, C.C., 2011. Satellite imagery reveals new critical habitat for Endangered bird species in the high Andes of Peru. Endan- gered Species Res. 13, pp.145-157. https://doi.org/10.1007/s40011-018-1044-3
9. Bhandari, M.S., Meena, R.K., Shankhwar, R., 2020. Prediction mapping through MaxEnt modeling paves the way for the conservation of Rhododendron arboreum in Uttarakhand Himalayas. J Indian Soc Remote Sens., 48, pp.411-422. https://doi.org/10.1007/s12524-019-01089-0
10. Braunisch, V. and Suchant, R., 2007. A model for evaluating the ‘habitat potential’ of a landscape for capercaillie Tetrao urogallus: a tool for conservation planning. - Wildl. Biol. 13, pp.21-33. https://doi.org/10.2981/0909-6396(2007)13[21:AMFETH]2.0.CO;2
11. Brummitt, N., Bachman, S., Lughadha, E.M.N., Moat, J., Albuquerque, S., Aletrari, E., Andrews, A. K., Atchison, G. et al., 2010. Plants Under Pressure a Global Assessment The First Report of the IUCN Sampled Red List Index for Plants. Royal Botanic Gardens, Kew, UK.
12. Busby, J.R., 1991. Bioclimate Analysis and Prediction System. Plant Protection Quarterly, 6 (1).
13. Bustamante, M.M.C., Silva, J.S., Scariot, A., Sampaio, A.B., Mascia, D.L., Garcia, E., Sano, E., Fernandes, G.W., Durigan, G., Roitman, I., Figueiredo, I., Rodrigues, R.R., Pillar, V.D., Oliveira, A.O de, Malhado, A.C., Alencar, A., Vendramini, A., Padovezi, A., Carrascosa, H., Freitas, J., Siqueira, J.A., Shimbo, J., Generoso, L.G., Tabarelli, M., Biderman, R., Salomão, R. de P., Valle, R., Junior, B., and Nobre, C., 2019. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig Adapt Strateg Glob Change, 24, pp.1249-1270. https://doi.org/10.1007/s11027-018-9837-5
14. Carpenter, G., Gillison, A. and Winter, J., 1993. Domain: A Flexible Modelling Procedure for Mapping Potential Distributions of Plants and Animals. Biodiversity & Conservation, 2, pp.667-680. https://doi.org/10.1007/BF00051966
15. Chandra, N., Rai, I.D., Mishra, A.P., Dwivedi, S.K., Kotiya, A., Tiwari, U.K. and Singh, G., 2022. Assessing potential habitats and populations of selected medicinal herbs in Alpine areas of Uttarakhand, Western Himalaya. Indian Journal of Forestry, 45(3), pp.144-155. https://doi.org/10.54207/bsmps1000-2023-ITRFNL
16. de Araújo, C.B., Marcondes-Machado, L.O. and Costa, G.C., 2014. The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. Journal of Biogeography. 41, pp.513-523. https://doi.org/10.1111/jbi.12234
17. Devika, M.A. and Amitha Bachan, K.H., 2021. Niche profiling, Niche modelling and reassessment of three IUCN red listed endemic tree species for conservation and ecorestoration. Masters Thesis, University of Calicut, Kerala.
18. Devika M.A. and Amitha Bachan, K.H. 2023a. Niche model based conservation and ecorestoration area prediction of threatened Prioria pinnata (Fabaceae) and conservation implication on IUCN status, Acta Ecologica Sinica, Elsevier 43(6), pp.925-1148. https://doi.org/10.1016/j.chnaes.2023.10.002
19. Devika, M.A. and Amitha Bachan, K.H., 2023b. Syzygium caryophyllatum. The IUCN Red List of Threatened Species 2024. (draft assessment In press).
20. Elith J., Graham C.H., Anderson R.P., Dudik M., Ferrier S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 29, pp.129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
21. Ellis, E.C. and Ramankutty, N., 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment. 6(8), pp.439-446. https://doi.org/10.1890/070062
22. Elton, C.S. 1927. Animal Ecology. Sidgwick and Jackson, London.
23. Fick S.E. and Hijmans R.J., 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 37(12), pp. 4302-4315. https://doi.org/10.1002/joc.5086
24. Gastón, A., García-Viñas, J.I., Bravo-Fernández, A.J., López-Leiva, C., Oliet, J.A., Roig, S., and Serrada, R., 2014. Species distribution models applied to plant species selection in forest restoration: are model predictions comparable to expert opinion?. New Forests 45, pp.641-653 https://doi.org/10.1007/s11056-014-9427-7
25. GBIF, 2023. GBIF Occurrence Download https://doi.org/10.15468/dl.n6y8dg
26. Grinnell, J., 1917. The Niche relationships of the California Thrasher. Auk 34, pp.427-33. https://doi.org/10.2307/4072271
27. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25(15), pp.1965-1978. https://doi.org/10.1002/joc.1276
28. Hussain, A. 2017. Conservation aspects of Syzygium travancoricum Gamble – A critically endangered species with respect to other allied species of southern Western Ghats. Thesis submitted to Manonmaniam Sundaranar University, Tirunelveli.
29. Jarvis A., Reuter, H.I., Nelson, A. and Guevara, E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Available from https://srtm.csi.cgiar.org
30. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., et al., 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), pp.1366-1379. https://doi.org/10.1111/ddi.12096
31. Manish, K., Telwala, Y., Nautiyal, D.C. and Pandit M.K., 2016. Modelling the impacts of future climate change on plant communities in the Himalaya: a case study from Eastern Himalaya. India. Model Earth Syst Environ, 2, p.92. https://doi.org/10.1007/s40808-016-0163-1
32. Miller J., 2010. Species Distribution Modeling. Geography Compass. 4(6), pp.490-509. https://doi.org/10.1111/j.1749-8198.2010.00351.x
33. Naimi B., 2015. On uncertainty in species distribution modelling. ITC dissertation no. 267. University of Twente. https://doi.org/10.3990/1.9789036538404
34. Palkar, R.S., Janarthanam, M.K. and Sellappan, K., 2020. Prediction of potential distribution and climatic factors influencing Garcinia indica in the Western Ghats of India using ecological niche modeling. Natl Acad Sci Lett., 43, pp.585-591. https://doi.org/10.1007/s40009-020-00918-y
35. Peterson, A.T., Soberon, J., Pearson, R.G., Anderson, R.P., Martinez-Meyer, E., Nakamura, M. and Araújo, M.B., 2011. Ecological niches and geographic distribution. Princeton University Press, Princeton, New Jersy. 3
36. Peterson, A.T. and Y. Nakazawa, 2008. Environmental data sets matter in ecological niche modeling: An example with Solenopsis invicta and Solenopsis richteri. Global Ecol. Biogeog. 17, pp.135-144. https://doi.org/10.1111/j.1466-8238.2007.00347.x
37. Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190, pp.231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
38. Qin, A., Liu, B., Guo, Q., Bussmann, R.W., Ma, F., Jian, Z., Xu, G., Pei, S., 2017. MaxEnt modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv, 10, pp.139-146. https://doi.org/10.1016/j.gecco.2017.02.004
39. Rotenberry, T.J., Preston, K.L. and Knick, S.T., 2006. GIS-based Niche modeling for mapping species habitat. Ecology. 87(6), pp.1458-1464. https://doi.org/10.1890/0012-9658(2006)87[1458:GNMFMS]2.0.CO;2
40. Royle, J.A., R.B. Chandler, C. Yackulic and J.D. Nichols., 2012. Likelihood Analysis of Species Occurrence Probability from Presence-Only Data for Modelling Species Distributions. Methods in Ecology and Evolution. 3, pp.545-554. https://doi.org/10.1111/j.2041-210X.2011.00182.x
41. Sharma, S., Arunachalam, K., Bhavsar, D. and Kala, R., 2018. Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand—A conservation approach. J Appl Res Med Aromat Plants, 10, pp.99-105. https://doi.org/10.1016/j.jarmap.2018.02.003
42. Simonson, W.D., Miller, E., Jones, A., García-Rangel, S., Thornton, H. and McOwen, C., 2021. Enhancing climate change resilience of ecological restoration — A framework for action. Perspectives in Ecology and Conservation, 19(3), pp.300-310. https://doi.org/10.1016/j.pecon.2021.05.002
43. Singh, R.L., 1977. India, a regional geography. National Geographical Society of India, Varanasi.
44. Sobral-Souza, T., Santos, J.P., Maldaner, M.E., Lima-Ribeiro, M.S. and Ribeiro, M.C., 2021. EcoLand: A multiscale niche modelling framework to improve predictions on biodiversity and conservation, Perspectives in Ecology and Conservation. 19(3), pp.362-368. https://doi.org/10.1016/j.pecon.2021.03.008
45. Stalin, N. and Sudhakar, S.P., 2018. Phenological Patterns of an Endangered Tree Species Syzygium caryophyllatum in Western Ghats, India: Implication for Conservation. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 89, pp.1275-1281. https://doi.org/10.1007/s40011-018-1044-3
46. Stalin, N. and Swamy, P.S., 2015. Prediction of suitable habitats for Syzygium caryophyllatum, an endangered medicinal tree by using species distribution modelling for conservation planning, European Journal of Experimental Biology. 5(11), pp.12-19
47. Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science, 240, pp.1285-1293. https://doi.org/10.1126/science.3287615
48. Thomas, C., Cameron, A., Green, R., 2004. Extinction risk from climate change. Nature 427, pp.145-148. https://doi.org/10.1038/nature02121
49. Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes , G.O. and Rouget, M., 2005. Niche-based modeling as a tool for predicting the global risk of alien plant invasions. Global Change Biology. 11, pp.2234-2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x