Research Article | Published: 01 December 2009

Studies on cellulose decomposition and glucanase production by Ganoderma lucidum (Curtis) P. Karst.

C. K. Tiwari and R. K. Verma

Indian Journal of Forestry | Volume: 32 | Issue: 4 | Page No. 601-604 | 2009
DOI: https://doi.org/10.54207/bsmps1000-2009-735Q22 | Cite this article

Abstract

Quantitative estimations were made among the different strains of Ganoderma lucidum collected from different places as well as host varied in cellulose decomposition capability and production of glucanase. Dalbergia sisso strain is the best cellulose decomposer (16.99%) and glucanase producer (79.67µg mg-1 ml-1) as compared to other strains collected from Eucalyptus tereticornis, Acacia catechu and Azadirachta indica.

Keywords

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

References

1. Bisht, N.S. and Harsh, N.S.K. (1981). Use of waste tea leaves as an aid to culture of some wood rotting fungi. Intern. Biodegrad. Bull. 17:19-20.

Google Scholar

2. Erikson, E.E. (1978). Enzyme mechanism involved in cellulose hydrolysis by rot fungus Sprotrichum pulverulentum. Biotech. 20: 317-332.  https://doi.org/10.1002/bit.260200302

Google Scholar

3. Fergus, C.L. (1969). The cellulolytic activity of thermophilic fungi and actinomycetes. Mycologia, 61: 120-129.  https://doi.org/10.1080/00275514.1969.12018706

Google Scholar

4. Forbes, R.S. and Dickison, C.H. (1977). Effect of temperature, pH and nitrogen on cellulolytic activity of Fusarium avenaceum. Trans. Brit. Mycol. Soc. 68: 229 -235.  https://doi.org/10.1016/S0007-1536(77)80012-0

Google Scholar

5. Ghose, T.K. (1977). Bioconservation of cellulosic substances in to energy, chemical and microbial protein. Indian Institute of Technology, New Delhi

6. Helliwell, G. (1963). Measurement of cellulose and factors affecting its activity. In: Advances in enzymic hydrolysis of cellulose and related materials. pp. 71-92. Pergamon Press, New York.   https://doi.org/10.1016/B978-0-08-009947-7.50009-8

Google Scholar

7. Helliwell, G. and Griffine, M. (1973). The nature and mode of action of the cellulolytic components C1 of Trichoderma koningii on native cellulose. Biochem. J. 135: 587-594.  https://doi.org/10.1042/bj1350587

Google Scholar

8. Helliwell, G. and Reiz, M. (1971). Interaction between components of cellulose complex of Trichoderma koningi on native substrate. Arch. Microbiol. 78: 295-309.  https://doi.org/10.1007/BF00412270

9. Helliwell, G. and Vincent, R. (1974). The action on cellulose and its derivatives of a purified 1, 4-β-glucanase from Trichoderma koningii. Biochem. J. 199: 409-417.  https://doi.org/10.1042/bj1990409

Google Scholar

10. Harsh, N.S.K. and Bisht, N.S. (1983). Cellulose decomposition by wood decaying fungi in different media. Indian Phytopath. 36: 556-558.

Google Scholar

11. Harsh, N.S.K. and Tiwari, C.K. (1990). Change in wood components after biodegradation.  Material und Organismen, 25: 135-143.

Google Scholar

12. Harsh, N.S.K. and Tiwari, C.K. (1998). Cellulose decomposition and cellulose production by four wood decaying fungi. Material und Organismen, 32: 145-152

Google Scholar

13. Highley, T.L. (1973). Influence of carbon source on cellulase activity of white rot and brown rot fungi. Wood and Fiber. 5: 50-58.

Google Scholar

14. Hudson, H.J. (1972). Fungal saprophytism. Studies in Biology. Ser. No. 32. Edward Arnold Pub. London 

15. Kirk, T.K. and Cowling, E.B. (1984). Biological decomposition of solid wood In: Rowell, M. and Ogep, M. (Eds) The chemistry of solid wood. Advances of chemistry Series. No, 207.   https://doi.org/10.1021/ba-1984-0207.ch012

Google Scholar

16. Mandels, M. and Reese, E.T. (1964). Enzymatic hydrolysis of cellulose. Dev. Ind. Microbiol.  5: 5-20.

Google Scholar

17. Miller, G. L. (1959). Measurement of reducing sugar by DNSA reagent. Ann. Chem. 31: 426-428.  https://doi.org/10.1021/ac60147a030

18. Morpeth, E. F. (1985). Some properties of cellobiose oxidase from white rot fungus Sporotrichum pulverulentum. Biochem. J. 228: 557-564.  https://doi.org/10.1042/bj2280557

Google Scholar

19. Natrajan, K. and Kannan, K. (1982). Cellulase production by Amanita muscaria. Curr. Sci. 51: 599-561.

Google Scholar

20. Reese, E.T, and Mandles, M. (1963). Enzymatic hydrolysis of cellulose and its Derivatives. In: Whistler, R.L. (Ed.) Methods of Carbohydrate Chemistry. pp 139-143. (Acad. Press) New York.

Google Scholar

21. Reese, E.T., Siu, R.G.H. and Levinson, H.S. (1950). The production of cellulolytic enzymes by fungal culture. J. Bacteriol. 59: 485-497.  https://doi.org/10.1128/jb.59.4.485-497.1950

22. Tiwari, C. K., Harsh, N.S.K. and Patra, A. K. (2004). Biodegradation of cellulose by wood decaying fungi. Indian Forester, 130: 805-810.

Google Scholar

23. Vyas, S.; Lachke, A. and Ahmad. A. (2003). Fungal cellulases for noval industrial application. In: Frontiers of fungal diversity in India. ed. Rao, Manoharachari, Bhat, Rajcak and Lakanpal. International Book Distributing Co. Lucknow, 143-159.

Google Scholar

24. Wastermark, U. and Errickson, K.E. (1974). Cellobiose: Quinone oxidareductase- a new wood-degrading enzymes from white rot fungi. Acta. Chem. Scand. 28: 209-314.  https://doi.org/10.3891/acta.chem.scand.28b-0209

Google Scholar

25. Wood, T.M. and McCrae, S. (1972). The cellulase of Trichoderma koningii purification and properties of some endo glucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. Biochem. J. 128: 1183 - 1192.

Google Scholar

About this article

How to cite

Tiwari, C.K. and Verma, R.K., 2009. Studies on cellulose decomposition and glucanase production by Ganoderma lucidum (Curtis) P. Karst.. Indian Journal of Forestry, 32(4), pp.601-604. https://doi.org/10.54207/bsmps1000-2009-735Q22

Publication History

Manuscript Published on 01 December 2009

Share this article

Anyone you share the following link with will be able to read this content: