Research Article | Published: 01 June 2016

Standardization of Suitable Substrate and Buffer Solutions for Optimum in-vivo Nitrate Reductase Activity in the Leaves of Sesbania rostrata Bremek. and Oberm.

S. P. Chaukiyal, Vandana and Poornima  Uniyal

Indian Journal of Forestry | Volume: 39 | Issue: 2 | Page No. 121-124 | 2016
DOI: https://doi.org/10.54207/bsmps1000-2016-7660V8 | Cite this article

Abstract

Sesbania rostrata Bremek. and Oberm. is a multipurpose and exceptionally fast growing nitrogen fixing plant. In this study a protocol for the standardization of in-vivo nitrate reductase (NR) assay with respect to substrate concentrations along with buffer pH and concentrations was carried out in the leaves of S. rostrata. Different substrate (KNO3) concentration ( i.e. 0.025M, 0.05M, 0.10M, 0.15M, 0.20M ) were tried against phosphate buffer (KH2PO4) solutions with different pH (6.5, 7.0, 7.5, 7.6, 7.7, 7.8 ). Maximum leaf in-vivo nitrate reductase activity was observed in 0.10 M phosphate buffer (KH2PO4) concentration of pH 7.5 with 0.15M substrate (KNO3) concentration.

Keywords

Sesbania rostrata, In-vivo Nitrate Reductase (NR) Activity, Substrate and Buffer Solution

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

References

1. Andrews, M. (1986). The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environment. 9:511-519. https://doi.org/10.1111/j.1365-3040.1986.tb01582.x

Google Scholar

2. Agboka, K., Gounou, S. and Tamo, M. (2006).  The role of maize- legumes-cassava intercropping in the management of maize ear borers with special reference to Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae). Annales de la Société entomologique de France (N.S.). 42(3-4): 495-502. https://doi.org/10.1080/00379271.2006.10697484

Google Scholar

3. Becker, M., Diekmann, K.H., Ladha, J.K., De Datta, S.K. and Ottowa, J.C.G. (1991). Effect of NPK on growth and nitrogen fixation of Sesbania rostrata as a green manure for lowland Rice (Oryza sativa L.). Plant and Soil.132(1):b149-158. https://doi.org/10.1007/BF00011021

Google Scholar

4. Beevers, R. and Hageman, R.H. (1969). Nitrate reduction in higher plants. Annual Review of Plant Physiology, 20:495-522.     https://doi.org/10.1146/annurev.pp.20.060169.002431

Google Scholar

5. Black, B.L., Fuchigami, L. and Coleman,G. (2002).Partitiong of nitrate assimilation among  leaves, stems and roots of Poplar. Tree Physiology, 22:717-724. https://doi.org/10.1093/treephys/22.10.717

Google Scholar

6. Capoen, W., Oldroyd, G., Goormachig, S. and Holsters, M. (2010). Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytologist. 186(2): 340-345. https://doi.org/10.1111/j.1469-8137.2009.03124.x

Google Scholar

7. Carelli, M.L.C. and Fahl, J.I. (2006). Partitoning of nitrate reductase actiovity in Coffea arabica L. and its relation to carbon assmiliation under different irradiance regimes. Brazilian Journal of Plant Physiology, 18 (3): On- line version, ISSN 1677-9452. https://doi.org/10.1590/S1677-04202006000300006

Google Scholar

8. Chaukiyal, S.P. and Mir, R.A. (2010). Assessment of nitrate reductase activity in the leaves of Terminalia chebula.  Indian Forester, 136(9): 1213-1217.

Google Scholar

9. Chaukiyal, S.P., Khatri, N., Bhatia, P. and Pokhriyal, T.C. (2014). Standardization of in-vivo nitrate  reductase activity and its pattern in the individual leaf blades of Myrica esculenta Buch. Ham. ex. D.Don. Indian Journal of Plant Physiology, 19(3): 287-291. https://doi.org/10.1007/s40502-014-0096-5

Google Scholar

10. Chaukiyal, S.P., Khatri, N., Kannojia, P. and Bhatia, P. (2015). In-vivo nitrate reductase activity in  the Myrica esculenta Buch. Ham. ex D.Don seedlings under nursery conditions. Octa Journal  of Environmental Research, 3 (2): 185-195. (ICV: 82.41). 

Google Scholar

11. Crawford, N.M., Kahn, M.L., Leustek, T. and Long, S.R. (2000). Nitrogen and sulfur. In: Biochemistry and  Molecular Biology of Plants. Eds. B. Buchanana, W. Bruissen and R. Jones. American Society of Plant Physiology, Rockville, M.D. 786-849.

Google Scholar

12. Dreyfus, B., Garcia, J.L. and Gilli, M. (1988). Characterization of Azorhizobium caulinodans gen. nov. sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. International Journal of Systematic Bacteriology, 38(1): 89-98. https://doi.org/10.1099/00207713-38-1-89

Google Scholar

13. Dykstra, G.F. (1974). Nitrte reductase activity and protein concentration of two Populus  clones. Plant Physiology, 53: 632-634. https://doi.org/10.1104/pp.53.4.632

Google Scholar

14. Evans, H.J. and Nason, A. (1953). Pyridine nucleotide nitrate reductase from extracts of higher plants. Plant Physiology, 28: 233-254. https://doi.org/10.1104/pp.28.2.233

Google Scholar

15. Germani, G., Reversat, G. and Luc, M. (1983). Effect of Sesbania rostrata on Hirschmanniella oryzae in Flooded Rice. The Journal of Nematology. 15(2): 269-271.

Google Scholar

16. Goormachtig, S., Valerio-Lepiniec, M., Szczyglowski, K., Montagu, M.V., Holsters, M. and De bruijn, F.J. (1995). Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Molecular Plant-Microbe Interactions. 8(6): 816-824.

Google Scholar

17. Huber, H. C., Bachmann, M. and Huber, J. L.  (1996). Post-translational regulation of NRA: A role for Ca+ and 14 +3-3 proteins. Trends in Plant Science, 1 (12): 432-438. https://doi.org/10.1016/S1360-1385(96)10046-7

Google Scholar

18. Kandpal, J. and Chaukiyal, S.P. (2014). Standardization of in-vivo nitrate reductase activity in the leaves of Albizia procera (Roxb.) Benth. Indian Journal of Forestry, 36 (4): 467-470.

Google Scholar

19. Klepper, L., Flesher, D. and Hageman, R. H. (1971). Generation of reduced nicotenamide adenine dinucleotide for nitrate reduction in green leaves. Plant Physiology, 48: 580-590. https://doi.org/10.1104/pp.48.5.580

Google Scholar

20. Li, X.Z. and Oaks, A. (1995). The effect of  light on the nitrate and nitrite reductases in Zea mays. Plant Sciences, 109 (2): 115-118. https://doi.org/10.1016/0168-9452(95)04159-R

Google Scholar

21. Mulongoy, K. (1986). Potential of Sesbania rostrata (Brem.) as nitrogen source in alley cropping systems. Biological Agriculture and Horticulture, 3 (4): 341-346.

Google Scholar

22. Nair, T.V.R. and Abrol, Y.P. (1977). Studies of nitrate reducing systems in developing wheat ears. Crop Science, 17: 428-442. https://doi.org/10.2135/cropsci1977.0011183X001700030024x

Google Scholar

23. Pokhriyal, T.C. and Raturi, A.S.  (1984). Nitrate assimilation in leaf blades of Eucalyptus. Indian Forester, 110(2): 202-208.   

Google Scholar

24. Prot, J., Soriano, I.R.S., Matias, D.M. and Savary, S. (1992). Use of green manure crops in control of Hirschmanniella mucronata and H. oryzae in irrigated Rice. The Journal of Nematology. 24(1):127-132.

Google Scholar

25. Rajasree, G. and Pillai, G.R. (2001). Performance of fodder legumes under lime and phosphorus nutrition in summer Rice fallows. Journal of Tropical Agriculture, 39 (1): 67-70.

Google Scholar

26. Rautela, P.S., Semwal, P. and Chaukiyal, S.P. (2013). Nitrate reductase activity in the leaf blade of Castanospermum australe Cunn. Et Fraser. Indian Forester, 139 (6): 564-565.

Google Scholar

27. Semwal, P., Rautela, P., and Chaukiyal, S.P. (2012). Nitrate reductase activity in the leaf blade of Grewia optiva Drummond ex. Burret (Bhimal) Annals of Forestry, 20 (2): 168-174.

Google Scholar

28. Sharma, P., Chaukiyal, S.P. and Sengar, M.S. (2015). Nitrate reductase activity in the leaf blade of Adenanthera microsperma. Indian Journal of Forestry, 38(2): 1-4.

Google Scholar

29. Smirnoff, N., Todd, P. and Stewart, G.R. (1984). The occurrence of nitrate reduction in the leaves of woody plants. Annals of Botany, 54:363-374. https://doi.org/10.1093/oxfordjournals.aob.a086806

Google Scholar

30. Suzuki, S., Aono, T., Lee, K., Suzuki, T., Lui, C., Miwa, H., Wakao, S., Iki, T., and Oyaizu, H. (2007). Rhizobial factors required for stem nodule maturation and maintenance in Sesbania rostrata- Azorhizobium caulinodans ORS571 symbiosis. Applied and Environmental Micribiology. 73 (20): 6650-6659. https://doi.org/10.1128/AEM.01514-07

Google Scholar

31. Topps, J.H. (1992). Potential, composition and use of legume shrubs and trees as fodders for liovestock in the tropics. The Journal of Agricultural Science. 118(1): 1-8. https://doi.org/10.1017/S0021859600067940

Google Scholar

32. Traux, B., Lambert, F. , Gagnon, D.C. and Chevrier, N.  (1994). Nitrate reductase and glutamine synthetase activities in relation to growth and nitrogen assilimation in red oak and red ash seedlings: effects and N-forms, N concentration and light intensity. Trees, 9: 12-18. https://doi.org/10.1007/BF00197864

Google Scholar

33. Ventura, W. and Wantanabe, I. (1993). Green manure production of Azolla microphylla and Sesbania rostrata and their long term effects on Rice yields and soil fertility. Biology and Fertility of Soils. 15(4): 241-248. https://doi.org/10.1007/BF00337207

Google Scholar

34. Wagner, S.C. (2011). Biological Nitrogen Fixation. Nature Education Knowledge. 3(10):15.  

Google Scholar

About this article

How to cite

Chaukiyal, S.P., Vandana and Uniyal, P., 2016. Standardization of Suitable Substrate and Buffer Solutions for Optimum in-vivo Nitrate Reductase Activity in the Leaves of Sesbania rostrata Bremek. and Oberm.. Indian Journal of Forestry, 39(2), pp.121-124. https://doi.org/10.54207/bsmps1000-2016-7660V8

Publication History

Manuscript Published on 01 June 2016

Share this article

Anyone you share the following link with will be able to read this content: