1. Abrol, I.P., 1986. Fuel and forage production from salt affected wasteland in India. Reclamation and Revegetation Research, 5, pp.65-74
2. Banerjee, S.K. and Gupta B.N., 1996. Biological Reclamation of Mined Out Land. TFRI Series IV. Tropical Forest Research Institute, Jabalpur (Madhya Pradesh)
3. Banerjee, S.K., Dugaya, D., Manjhi, R.B. and Nandeshwar, D.L., 1996. Spoil characteristics and vegetation succession in an age series of coal mine spoils as influenced by microsites. Advances in Forestry Research in India, 16, pp.178-216
4. Banerjee, S.K., Singh, A.K., Jain, A. and Shukla, P.K., 2003. Response of conservation measures on the growth of planted species and improvement in soil properties in a degraded area. Indian For., 129, pp.1504-1516
5. Banerjee, S.K., Mishra, T.K., Singh, A.K. and Jain A., 2004. Impact of plantation on ecosystem development in disturbed coal mine overburden spoils. Journal of Tropical Forest Science, 16, pp.294-307
6. Bhowmik, A.K. and Jain, A., 2008. Evaluation of forest tree species in pot culture using limestone mine spoil. Indian Agric., 52, pp.151-157
7. Bhowmik, A.K., Mishra, A.K., Mishra, P.N. and Banerjee, S.K.,1996. Performance of different NFT and Non-NFT species on Iron Mine Overburden. Environment & Ecology, 14, pp.607-611
8. Bradshaw, A.D. and Chadwick, M.J., 1980. The Reconstruction of Land. Blackwell Scientific Publication, Oxford
9. Chaney, R.L., Angle, J.S., Broadhurst, C.L., Peters, C.A., Tappero, R.V. and Donald, L.S., 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal Environmental Quality, 36, pp.1429-1433 https://doi.org/10.2134/jeq2006.0514
10. Coates, W., 2005. Tree species selection for a mine tailings bioremediation project in Peru. Biomass Bioenergy, 28, pp.418-423 https://doi.org/10.1016/j.biombioe. 2004. 11. 002
11. Conesa, H.M., Garcia, G., Faz, A. and Arnaldos, R., 2007. Dynamics of metal tolerant plant communities development in mine tailings from the Cartagena-La Union Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere, 68, pp.1180-1185 https://doi.org/10.1016/j.chemosphere. 2007.01.072
12. Connell, J.H. and Slatyer, R.O., 1977. Mechanism of succession and their role in community stability and organisation. Am. Nat., 11, pp.1119-1144 https://doi.org/10.1086/283241
13. Coppin, N.J. and Bradshaw, A.D., 1982. The establishment of vegetation in quarries and open-pit non-metal mines. Mining Journal Books, London
14. Dellavalle, N.B., 2020. Determining the Gypsum Requirement for Reclamation of Sodic and Sodium-Impacted Soils. Crops & Soils Magazine, May-June 2020, pp.8-10 https://doi.org/10.1002/crso.20031
15. Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Claudine Franche, M. Krishna Kumar, N. and Laplaze L., 2013. Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, pp.1-9 https://doi.org/10.1155/2013/948258
16. Ghose, M.K., 2005. Soil conservation for rehabilitation and revegetation of mine-degraded land. TIDEE - TERI Information Digest on Energy and Environment, 4, pp.137-150
17. Gibson, D.J., Johnson, F.L. and Risser, P.G., 1985. Revegetation of unreclaimed coal strip mines in Oklahama. II. Plant, communities. Reclamation & Revegetation Research, 4, pp.31-47
18. Gitt, M.J. and Dollhopf, D.J., 1991. Coal waste reclamation using automated weathering to predict lime requirement. Journal Environmental Quality, 20, pp.285-288 https://doi.org/10.2134/jeq1991. 00472425002000010046x
19. Gould, A.B. and Hendrix, J.W., 1998. Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. II Mycorrhizal fungal communities. Canadian Journal Botany, 76, pp.204-212 https://doi.org/10.1139/b97-149
20. Gould, A.B., Hendrix, J.W. and Ferriss, R.S., 1996. Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. I Propagule and spore population densities. Canadian Journal Botany, 74, pp.247-261 https://doi.org/10.1139/b96-030
21. Gupta, R.K., 1979. ‘Reclamation and use of coal-mined ecosystem in India: a review’, in Wali, M,D. (ed.), Ecology and Coal Resource Development, New York: Pergamon Press https://doi.org/10.1016/B978 -1-4832-8365-4.50071-5
22. Halofsky, J.E. and McCormick, L.H., 2005. Establishment and growth of experimental grass species mixtures on coal mine sites reclaimed with municipal biosolids. Environmental Management, 35, pp.569-578 https://doi.org/10.1007/s00267-004-0094-x
23. HFRI, 2005. Annual Report 2004-05. Himalayan Forest Research Institute, Shimla
24. IBEF, 2020. India Brand Equity Foundation. [online] Available at: <https://www.ibef.org/archives/industry/Metals-and-mining-reports/indian-metals-and-mining industry-analysis-october-2019>
25. IPBES, 2018. ‘The IPBES assessment report on land degradation and restoration’, in Montanarella, L., Scholes, R., and Brainich, A. (eds.), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany
26. ICFRE, 2020. A Handbook on Mine Reclamation. Indian Council of Forestry Research and Education, Dehradun
27. Jha, A.K. and Singh, J.S., 1990. Vascular flora of naturally revegetated coal mine spoil in a dry tropical environment. J. Trop. For., 6, pp.131-142
28. Joost , R.E., Olsen, F.J. and Jones, J.H., 1987. Revegetation and Minesoil Development of Coal Refuse Amended with Sewage Sludge and Limestone. Journal of Environmental Quality, 16, pp.65-68 https://doi.org/10.2134/jeq1987.00472425001600010013x
29. Jordan, F.L. Robin-Abbott, M. Maier, R.M. and Glenn, E.P., 2002. A comparison of chelator-facilitated metal uptake by a halophytes and a glycophyte. Environment Toxicology Chemistry. 21, pp.2698-2704 https://doi.org/10.1002/etc
30. Karthikeyan, A., Deeparaj, B. and Nepolean, P., 2009. Reforestation in bauxite mine spoils with Casuarina equisetifolia frost. and beneficial microbes. Forests, Trees and Livelihoods, 19, pp.153-165 https://doi.org/10.1080/14728028.2009.9752661
31. Kundu, N.K., and Ghose, M.K., 1997. Soil profile Characteristic in Rajmahal Coalfield area. Indian Journal of Soil and Water Conservation, 25, pp.28-32
32. Larney, F.J. and Angers, D.A., 2012. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci., 92, pp.19-38 https://doi.org/10.4141/cjss2010-064
33. Li, Y.M., Chaney, R.L., Brewer, E.P., Roseberg, R.J., Angle, J.S., Baker, A.J.M., Reeves, R.D. and Nelkin, J., 2003. Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant Soil, 249, pp.107-115 https://doi.org/10.1023/A :1022527330401
34. Lindemann, W.C., Lindsey, D.L. and Fresquez, P.R., 1984. Amendment of mine spoils to increase the number and activity of microorganisms. Soil Sci. Soc. Am. Journal, 48, pp.574-578 https://doi.org/10.2136/sssaj1984.03615995004800030021x
35. Madejon, E., de Mora, A.P., Felipe, E., Burgos, P. and Cabrera, F., 2006. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environment Pollution, 139, pp.40-52 https://doi.org/10.1016/j.envpol.2005.04.034
36. Maiti, S.K., 2003. MoEF Report, an assessment of overburden dump rehabilitation technologies adopted in CCL, NCL, MCL, and SECL mines (Grant no. J-15012/38/98-IA IIM)
37. Maiti, S.K. and Ghose, M.K., 2005. Ecological restoration of acidic coal mine overburden dumps-an Indian case study. Land Contamination and Reclamation, 13, pp.361-369 https://doi.org/10.2462/09670513. 637
38. Manivannan, S., Sikka, A.K., Priya Devi, S., Ashok Kumar, J., Singh, N.P. and Manjunath, B.L., 2016. Biological Reclamation of Iron Ore Overburdens. Technical Bulletin No. 57 ICAR-Central Coastal Agricultural Research Institute, Goa
39. Mann, H.S. and Chatterji, P.C., 1979. ‘Impact of mining operation on the ecosystem in Rajasthan, India’, in Wali, M.D. (ed.), Ecology and Coal Resource Development. New York: Pergamon Press https://doi.org/10.1016/B978-1-4832-8365-4.50084-3
40. Marrs, R.H., Roberts, R.D., Skeffington, R.A. and Bradshaw, A.D., 1981. Ecosystem development on naturally colonized china day wastes. II Nutrient compartmentation. J. Ecol., 69, pp.163-169 https://doi.org/10.2307/2259823
41. Mechie A. and Sanches, D.L., 2010. The Environmental Impact of Mining in the State of São Paulo. Estudos Avançados, 24, pp.209-219 https://doi.org/10.1590/S0103-40142010000100016
42. Mertens, J., Van Nevel, L., De Schrijver, A., Piesschaert, F., Oosterbean, A., Tack, F.M.G. and Verheyen, K., 2007. Tree species effect on the redistribution of soil metals. Environmental Pollution, 149, pp.173-181 https://doi.org/10.1016/j.envpol. 2007.01.002
43. Padmavathiamma, P.K. and Li, L. Y., 2007. Phytoremediation technology: Hyperaccumulation metals in plants. Water Air Soil Pollution, 184, pp.105-126 https://doi.org/10.1007/s11270-007-9401-5
44. Prad, R. and Chadhar, S.K., 1987. Afforestation of dolomite mine overburdens in Madhya Pradesh. Journal of Tropical Forestry, 3, pp. 124-131
45. Prasad, R. and Pandey, R.K., 1985. Natural plant succession in rehabilitated bauxite and coal mine overburden of Madhya Pradesh. J. Trop. For., 1, pp.309-320
46. Pulford, I.D. and Watson, C., 2003. Phytoremediation of heavy metal-contaminated land trees-a review. Environmental International, 29, pp.529-540 https://doi.org/10.1016/S0160-4120(02)00152-6
47. Richards, L.A., 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA-Agric Handbook no. 60. U.S. Printing Office, Washington, DC https://doi.org/10.1097/00010694-195408000-00012
48. Russel, W.B., 1985. Vascular flora of abandoned coal-mined land, Rockey Mountain Foothills, Alberta. Naturalist, 99, pp.503-516
49. Sheoran, A.S., Sheoran, V. and Poonia, P., 2008. Rehabilitation of mine degraded land by metallophytes. Mining Engineers Journal, 10, pp.11-16
50. Sheoran, V., Sheoran, A.S. and Poonia, P., 2009. Phytomining: A review. Minerals Engineering, 22, pp.1007-1019 https://doi.org/10.1016/j. mineng.2009.04.001
51. Singh, A.N. and Singh, J.S., 2006. Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India. A synthesis. New Forests, 31, pp.25-39 https://doi.org/10.1007/s 11056-004-6795-4
52. Skeel, V.A. and Gibson, D.J., 1996. Physiological performance of Andropogon gerardii, Panicum virgatum and Sorghastrum nutans on reclaimed mine spoil. Restoration Ecology, 4, pp.355-367 https://doi.org/10.1111/j.1526 -100X.1996.tb00188.x
53. Smith, B.M., Diaz, A., Winder, L. and Daniels, R., 2005. The effect of provenance on the establishment and performance of Lotus corniculatus L. in a re-creation environment. Biological Conservation, 125, pp.37-46 https://doi.org/10.1016/j.biocon. 2005.02.014
54. Smith, J.A., Schuman, G.E., Depuit, E.J. and Sedbrook, T.A., 1985. Wood residue and fertilizer amendment of bentonite mine spoils: I. Spoil and general vegetation responses. Journal of Environmental Quality, 14, pp.575-580 https://doi.org/10.2134/jeq1985. 00472425001400040020x
55. Solomon, T. and Moon, H., 2018. Expansion of Exotic Tree Species and Impacts on Management of the Indigenous Trees; Emphasis on Eucalyptus Species in Wolaita, South Ethiopia- A Review. International Journal of Research & Review, 5, pp.15-20
56. Song, S. Q., Zhou, X., Wu, H. and Zhou, Y.Z., 2004. Application of municipal garbage compost on revegetation of tin tailings dams. Rural Eco-Environment, 20, pp.59-61
57. Thomson, R., Vogel, W.G. and Taylor, D.O., 1984. Vegetation and flora of a coal surface-mine in Leurel country Kentucky, Castanea, 49, pp.111-126
58. Tordoff, G.M., Baker, A.J.M. and Willis, A.J., 2000. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, pp.219-228 https://doi.org/10.1016/S0045-6535(99) 00414-2
59. Uresk, D.W. and Yamamoto, T., 1986. Growth of forbs, shrubs and trees on bentonite mine spoil under green house conditions. Journal Range Management, 39, pp.113-117 https://doi.org/10.2307/3899279
60. Verma, P., Singh, S. and Verma, R.K., 2017. Impact of plantation on Iron Ore Mined Overburden at Durg in Chhattisgarh, India. International Research Journal of Environmental Sciences, 6, pp.1-12
61. Visser, S., Fujikawa, J., Griffiths, C.L. and Parkinson, D., 1984. Effect of topsoil storage on microbial activity, primary production and decomposition potential. Plant and Soil. 82, pp.41-50 https://doi.org/10.1007/BF02220768
62. Voorhees, M.E. and Uresk, D.W., 1990. Effects of amendments on chemical properties of Bentonite mine spoil. Soil Science, 150, pp.663-670 https://doi.org/10.1097/00010694-199010000-00001
63. Williams, A.J, Singh R.B., Bhowmik, A.K., Singh, A.K. and Banerjee, S.K., 1994. Suitability of different tree species for Copper Mine Overburdens. Environment & Ecology, 12, pp.116-118
64. Williamson, J.C. and Johnson, D.B., 1991. Microbiology of soils at opencast sites: II. Population transformations occurring following land restoration and the influence of rye grass/ fertilizer amendments. Journal Soil Science. 42, pp.9-16 https://doi.org/10.1111/j.1365 -2389.1991.tb00086.x
65. Wu, C.Q., Lai, S.H., Xu, Y. Y., Xu, T. and Lei, J.L., 2008. ‘Application of 17 wild plant species in afforesting the abandoned quarry’, in D. Zhang, J. M. Lee and R. Tao (eds.), Proceedings of the International Symposium on Asian Plants with Unique Horticultural Potential, pp.501-508 https://doi.org/10.17660/ActaHortic.2008.769.73
66. Yang, B., Shu, W. S., Ye, Z. H., Lan, C. Y. and Wong, M. H., 2003. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere, 52, pp.1593-1600 https://doi.org/10.1016/S0045-6535(03)00499-5
67. Zhang, Z.Q., Shu, W.S., Lan, C.Y. and Wong, M. H., 2001. Soil seed bank as an input of seed sources in vegetation of lead/ zinc mine tailings. Restoration Ecology, 9, pp.1-8 https://doi.org/10.1046/j.1526-100X.2001.94007.x