Research Article | Published: 30 June 2023

Potential AM inoculants for enhanced growth performance and seedling survival in Nahar (Mesua ferrea) seedlings

Ningthoujam Ranjana Devi and Karuna Shrivastava

Indian Journal of Forestry | Volume: 46 | Issue: 1 | Page No. 22-31 | 2023
DOI: https://doi.org/10.54207/bsmps1000-2023-C7WUN6 | Cite this article

Abstract

Nahar or Mesua ferrea Linn. (Family Calophyllaceae) is a slow-growing, moderate to large-size evergreen tree species. Arbuscular Mycorrhize (AM) are well-known symbiotic partners that provide specific nutrients thus increase overall plant growth. The present study was undertaken to identify potential AM associates of M. ferrea for enhanced growth and survival. M. ferrea was recorded as a regular mycorrhizal species with high AM diversity at all stages of its lifecycle. Glomus, was the most abundant genus (15 species). The maximum AM species and spores were recorded at seedling stage (31; 96±4.67/100g of soil), while mature trees had the least numbers (11; 80±1.52). Total phosphorus was highest in the rhizosphere soil when number of AM spores was the lowest and root infection percentage was the highest. Glomus constrictum and G. feugianum, recorded with higher density (18.33±3.61and 31.00±7.55 spores/100g of soil respectively) and relative abundance (7.01% and 11.85% respectively), were selected to study their effect on growth and survival of M. ferrea seedlings. G. feugianum was found most suitable species with enhanced height growth (~172%) and seedling survival rate (80%) as compared to G. constrictum, both AM species together and control. Thus, G. feugianum may be used as potential mycorrhizal inoculant for sustainable M. ferrea plantation programme.

Keywords

Arbuscular mycorrhizal inoculants, Glomus, Greenhouse, Physicochemical, Rhizosphere

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Ambrosini, V.G., Voges, J.G., Canton, L., Couto, R.D.R., Ferreira, P.A.A., Comin, J.J., Melo, G.W.B.D., Brunetto, G. and Soares, C.R.F.S., 2015. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Brazilian Journal of Microbiology, 46, pp.1045-1052.  https://doi.org/10.1590/S1517-838246420140622

Google Scholar

2. Arora, P., Ansari, S.H. and Nazish, I., 2019. Mesua Ferrea: an ethnobotanically important plant. Am. J. PharmTech Res, 9(05).  https://doi.org/10.46624/ajptr.2019.v9.i5.003

Google Scholar

3. Balliu, A., Sallaku, G. and Rewald, B., 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), pp.15967-15981.  https://doi.org/10.3390/su71215799

Google Scholar

4. Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. and Zhang, L., 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in plant science, 10, p.1068.  https://doi.org/10.3389/fpls.2019.01068

Google Scholar

5. Betancur-Agudelo, M., Meyer, E. and Lovato, P.E., 2021. Arbuscular mycorrhizal fungus richness in the soil and root colonization in vineyards of different ages. Rhizosphere, 17, p.100307.  https://doi.org/10.1016/j.rhisph.2021.100307

Google Scholar

6. Chakraborty, K., Debnath, A., Das, A.R., Saha, A.K. and Das, P., 2019. Root-fungal associations in plants from home gardens of Tripura, Northeast India. Journal of Applied Biology and Biotechnology, 7(5), pp.25-30.  https://doi.org/10.7324/JABB.2019.70504

Google Scholar

7. Dabiré, A.P., Hien, V., Kisa, M., Bilgo, A., Sangare, K.S., Plenchette, C., Galiana, A., Prin, Y. and Duponnois, R., 2007. Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection. Mycorrhiza, 17, pp.537-545.  https://doi.org/10.1007/s00572-007-0126-5

Google Scholar

8. Gerdemann, J.W. and Nicolson, T.H., 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological society46(2), pp.235-244.  https://doi.org/10.1016/S0007-1536(63)80079-0

Google Scholar

9. Giovannetti, M. and Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New phytologist, 84(3), pp.489-500.  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Google Scholar

10. Gong, M., Tang, M., Zhang, Q. and Feng, X., 2012. Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecologica Sinica, 32(2), pp.62-67.  https://doi.org/10.1016/j.chnaes.2011.12.005

Google Scholar

11. Govindu, D., Hussain, A., Bellamkonda, S. and Duvva, A., 2019. Distribution of Arbuscular Mycorrhizal Fungi in Coal Mine and Forest Soils of North Telangana. Mycorrhiza News, 30(4), pp.1-12.

12. Guadarrama, P., Álvarez-Sánchez, J. and Briones, O., 2004. Seedling growth of two pioneer tropical tree species in Competition: The role of arbuscular mycorrhizae. Euphytica, 138, pp.113-121.

Google Scholar

13. Gupta, N. and Rahandale, R., 1999. Response of Albizia lebbek and Dalbergia sissoo towards dual inoculation of Rhizobium and arbuscular mycorrhizal Fungi. Indian J. Exp. Biol. 37, pp.1005-1011. 

Google Scholar

14. Jamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M. and Skwaryło-Bednarz, B., 2018. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review. International Agrophysics, 32(1), pp.133-140.  https://doi.org/10.1515/intag-2016-0090

Google Scholar

15. Koide, R.T., 2000. Mycorrhizal symbiosis and plant reproduction. In Kupulnik Y, Douds DD (eds) Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp.19-46.  https://doi.org/10.1007/978-90-481-9489-6_14

Google Scholar

16. Kormanik, P.P. and McGraw, A.C., 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Schenck NC (eds) Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul, pp.37-45.

Google Scholar

17. Lara-Pérez, L.A., Oros-Ortega, I., Córdova-Lara, I., Estrada-Medina, H., O’Connor-Sánchez, A., Góngora-Castillo, E. and Sáenz-Carbonell, L., 2020. Seasonal shifts of arbuscular mycorrhizal fungi in Cocos nucifera roots in Yucatan, Mexico. Mycorrhiza, 30, pp.269-283. https://doi.org/10.1007/s00572-020-00944-0

Google Scholar

18. Lekberg, Y.L.V.A., Koide, R.T., Rohr, J.R., Aldrich-Wolfe, L. and Morton, J.B., 2007.  Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 95(1), pp.95-105.  https://doi.org/10.1111/j.1365-2745.2006.01193.x

Google Scholar

19. Liu, R. and Wang, F., 2003. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 13(3), pp.123-127.  https://doi.org/10.1007/s00572-002-0207-4

Google Scholar

20. Lǚ, L.H., Zou, Y.N. and Wu, Q.S., 2019. Mycorrhizas mitigate soil replant disease of peach through regulating root exudates, soil microbial population, and soil aggregate stability. Communications in Soil Science and Plant Analysis, 50(7), pp.909-921.  https://doi.org/10.1080/00103624.2019.1594882

Google Scholar

21. Michelsen, A. and Rosendahl, S., 1990. The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant and soil, 124, pp.7-13. https://doi.org/10.1007/BF00010925

Google Scholar

22. Mosse, B., 1981. Vesicular- Arbuscular Mycorrhiza research for tropical agriculture. Hawaii Institute of Tropical Agriculture and Human Resources, Univ. of Hawaii. Research Bulletin, pp.194-82.

Google Scholar

23. Nelson, M.W. and Sommers, L.E., 1975. A rapid and accurate method for estimating soil organic carbon in soil. Proc, of the Indian Academy of science 84, pp.456-462.

24. Nicolson, T.H. and Schenck, N.C., 1979. Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71(1), pp.178- 198. https://doi.org/10.1080/00275514.1979.12020997

Google Scholar

25. Oehl, F., Sieverding, E., Ineichen, K., Maeder, P., Wiemken, A. and Boller, T., 2009. Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agriculture, ecosystems & environment, 134(3-4), pp.257-268.  https://doi.org/10.1016/j.agee.2009.07.008

Google Scholar

26. Okalebo, J.R., Gathua, K.W. and Woomer, P.L., 2002. Laboratory methods of soil and plant analysis: a working manual second edition. Sacred Africa, Nairobi, 21, pp.25-26.

Google Scholar

27. Pande, M. and Tarafdar, J., 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol 26, pp.233–241.  https://doi.org/10.1016/j.apsoil. 2003.12.009

Google Scholar

28. Pannalal, D. and Highland, K., 2010. Mycorrhizal colonization and distribution of arbuscular mycorrhizal fungi associated with Michelia champaca L. under plantation system in northeast India. Journal of Forestry Research 21(2), pp.137−142.  https://doi.org/10.1007/s11676-010-0022-2

Google Scholar

29. Phillips, J.M. and Hayman, D.S., 1970. Improved procedure of cleaning and staining of vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transaction of the British mycological Society 55, pp.158-161.  https://doi.org/10.1016/S0007-1536(70)80110-3

Google Scholar

30. Rodríguez-Morelos, V.H., Soto-Estrada, A., Pérez-Moreno, J., Franco-Ramírez, A. and Díaz-Rivera, P., 2014. Arbuscular mycorrhizal fungi associated with the rhizosphere of seedlings and mature trees of Swietenia macrophylla (Magnoliophyta: Meliaceae) in Los Tuxtlas, Veracruz, Mexico. Revista chilena de historia natural, 87(1), pp.1-10.  https://doi.org/10.1186/s40693-014-0009-z

Google Scholar

31. Salim, M.A., Setyaningsih, L., Iskandar, I., Wahyudi, I., and Kirmi, H., 2020. Root colonization by arbuscular mycorrhizal fungi (AMF) in various age classes of revegetation post-coal mine. Biodiversitas Journal of Biological Diversity, 21(11). https://doi.org/10.13057/biodiv/d211105

Google Scholar

32. Sarkodee-Addo, E., Yasuda, M., Gyu Lee, C., Kanasugi, M., Fujii, Y., Ansong Omari, R., Oppong Abebrese, S., Bam, R., Asuming-Brempong, S., Mohammad Golam Dastogeer, K. and Okazaki, S., 2020. Arbuscular mycorrhizal fungi associated with rice (Oryza sativa L.) in Ghana: effect of regional locations and soil factors on diversity and community assembly. Agronomy, 10(4), p.559.  https://doi.org/10.3390/agronomy10040559

Google Scholar

33. Satya, V.M., Hindumathi, A. and Reddy, B.N., 2014. Arbuscular mycorrhizal Fungi associated with Rhizosphere soil of brinzal cultivated in Andhra Pradesh, India. Int J Curr Microbial App Sci: 3(5), pp.519-529.

Google Scholar

34. Schenck, N.C., 1982. Methods and principles of mycorrhizal research. The American Phytopathological Society.

Google Scholar

35. Schenck, N.C and Perez, Y., 1990. Isolation and culture of VAM fungi. In Labeda DP. (eds) Isolation of Biotechnological organism from nature. McGraw-Hill Book Co. New York, pp.237-258.

Google Scholar

36. Schenck, N.C. and Smith, G.S., 1982. Additional new and unreported species of mycorrhizal fungi (Endogonaceae) from Florida. Mycologia 74(1), pp.77-92.  https://doi.org/10.1080/00275514.1982.12021472

Google Scholar

37. Schüßler, A. and Walker, C., 2010. The Glomeromycota. A species list with new families and new genera. Gloucester, England.

Google Scholar

38. Silva-Flores, P., Bueno, C.G., Neira, J. and Palfner, G., 2019. Factors Affecting Arbuscular Mycorrhizal Fungi Spore Density in the Chilean Mediterranean-Type Ecosystem. Journal of soil science and plant nutrition 19, pp.42-50.  https://doi.org/10.1007/s42729-018-0004-6

Google Scholar

39. Smith, S.E., Facelli, E., Pope, S. and Andrew Smith, F., 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and soil, 326, pp.3-20.  https://doi.org/10.1007/s11104-009-9981-5

Google Scholar

40. Son, C.L. and Smith, S.E., 1988. Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytologist, 108(3), pp.305-314.  https://doi.org/10.1111/j.1469-8137.1988.tb04167.x

Google Scholar

41. Suhardi, M.N., Radjagukguk, B. and Karyanto, O., 1997. Interaction among progenies/provenances of sengon, arbuscular mycorrhizal fungi and riiizobial isolates grown on ultisol. Buletin Kehutanan= Forestry Bulletin.

Google Scholar

42. Turjaman, M., Tamai, Y., Santoso, E., Osaki, M. and Tawaraya, K., 2006. Arbuscular mycorrhizal fungi increased early growth of two nontimber forest product species Dyera polyphylla and Aquilaria filaria under greenhouse conditions. Mycorrhiza, 16, pp.459-464.  https://doi.org/10.1007/s00572-006-0059-4

Google Scholar

43. Uhlmann, E., Görke, C., Petersen, A. and Oberwinkler, F., 2004. Comparison of species diversity of arbuscular mycorrhizal fungi in winter-rainfall areas of South Africa and summer-rainfall areas of Namibia. Mycological Progress, 3, pp.267-274.  https://doi.org/10.1007/s11557-006-0097-5

Google Scholar

44. Wang, G.M., Stribley, D.P., Tinker, P.B. and Walker, C., 1993. Effects of pH on arbuscular mycorrhiza I. Field observations on the long‐term liming experiments at Rothamsted and Woburn. New Phytologist foundation, 124(3), pp.465-472.  https://doi.org/10.1111/j.1469-8137.1993.tb03837.x

Google Scholar

45. Wang, J., Wang, G.G., Zhang, B., Yuan, Z., Fu, Z., Yuan, Y., Zhu, L., Ma, S. and Zhang, J., 2019. Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests, 10(5), p.424.  https://doi.org/10.3390/f10050424

Google Scholar

46. Wang, J., Zhong, H., Zhu, L., Yuan, Y., Xu, L., Wang, G.G., Zhai, L., Yang, L. and Zhang, J., 2019. Arbuscular mycorrhizal fungi effectively enhance the growth of Gleditsia sinensis Lam. seedlings under greenhouse conditions. Forests, 10(7), p.567.  https://doi.org/10.3390/f10070567

Google Scholar

47. Wang, M. and Jiang, P., 2015. Colonization and diversity of AM fungi by morphological analysis on medicinal plants in southeast China. The Scientific World Journal https://doi.org/10.1155/2015/753842

Google Scholar

48. Wubet, T., Kottke, I., Teketay, D. and Oberwinkler, F., 2009. Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycological Progress, 8, pp.317-328. www.amf-phylogeny.com.  https://doi.org/10.1007/s11557-009-0602-8

Google Scholar

49. Yadav, K., Aggarwal, A. and Singh, N., 2013. Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products, 45, pp.88-93.  https://doi.org/10.1016/j.indcrop.2012.12.001

Google Scholar

50. Yang, R., Zan, S., Tang, J., Chen, X. and Zhang, Q., 2010. Variation in community structure of arbuscular mycorrhizal fungi associated with a Cu tolerant plant - Elsholtzia splendensApplied Soil Ecology, 44(3), pp.191-197.  https://doi.org/10.1016/j.apsoil.2009.12.005

Google Scholar

51. Zabala, N.Q., 1990. Silviculture of Species, Development of professional education in forestry sector. Bangladesh Institute of Forestry. Chittagong University, Bangladesh.

52. Zhang, M., Yang, M., Shi, Z., Gao, J. and Wang, X., 2022. Biodiversity and variations of arbuscular mycorrhizal fungi associated with roots along elevations in Mt. Taibai of China. Diversity, 14(8), p.626.  https://doi.org/10.3390/d14080626

Google Scholar

About this article

How to cite

Devi, N.R. and K.S., 2023. Potential AM inoculants for enhanced growth performance and seedling survival in Nahar (Mesua ferrea) seedlings. Indian Journal of Forestry, 46(1), pp.22-31. https://doi.org/10.54207/bsmps1000-2023-C7WUN6

Publication History

Manuscript Received on 14 February 2023

Manuscript Revised on 06 April 2023

Manuscript Accepted on 12 April 2023

Manuscript Published on 30 June 2023

Share this article

Anyone you share the following link with will be able to read this content: