Research Article | Published: 01 July 2024

Biomass, carbon stock and carbon dioxide sequestration by trees outside forests: A case study from Puducherry, India

Munisamy Anbarashan, Natesan Balachandran, Paneerselvam Uma Maheswari and Durai Ilavarasy

Indian Journal of Forestry | Volume: 47 | Issue: 1 | Page No. 1-11 | 2024
DOI: https://doi.org/10.54207/bsmps1000-2024-GLMV02 | Cite this article

Abstract

Trees outside forests (ToF) play a vital role in reducing carbon from industrial activities and vehicles by sequestering and storing atmospheric Co2 generated as biomass. However, there is a scarcity of studies quantifying the biomass and carbon stock in the ToFs. To bridge this gap, we conducted a study on the potential of biomass and carbon dioxide sequestration in trees planted in Puducherry. Our findings show that the total above-ground biomass of adult trees in the city was 1926.03 Megagram (Mg), while belowground biomass was 244.47 Mg. The total carbon stored in adult trees was 966.53 Mg, while the volume of sequestered CO2 was 3547.17 Mg in the study area. To increase carbon dioxide sequestration in Puducherry town, we recommend increasing urban green cover and planting more fast-growing native species.

Keywords

Aboveground Biomass, Atmospheric CO2, Carbon storage, Fast growing native species, Urban tree cover

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Agbelade, A.D., Onyekwelu, J.C. and Oyun, M.B., 2017. Tree species richness, diversity, and vegetation index for federal capital territory, Abuja, Nigeria. International Journal of Forestry Research.   https://doi.org/10.1155/2017/4549756

Google Scholar

2. Alvey, A.A., 2006. Promoting and preserving biodiversity in the urban forest. Urban forestry and urban greening, 5(4), pp.195-201.  https://doi.org/10.1016/j.ufug.2006.09.003

Google Scholar

3. Amoatey, P. and Sulaiman, H., 2020. Quantifying carbon storage potential of urban plantations and landscapes in Muscat, Oman. Environment, Development and Sustainability, 22, pp.7969-7984.  https://doi.org/10.1007/s10668-019-00556-5

Google Scholar

4. ASTM, 1986. Standard test methods for specific gravity of wood and wood-based materials. American Society for Testing and Materials D2395-83.

Google Scholar

5. Babalola, F.D., Borokini, T.I., Onefeli, A.O. and Muchie, M., 2013. Socio-economic contributions of an indigenous tree in urban areas of Southwest Nigeria. African Journal of Science, Technology, Innovation and Development, 5(6), pp.479-489.  https://doi.org/10.1080/20421338.2013.820449

Google Scholar

6. Bayat, A.T., van Gils, H. and Weir, M., 2012. Carbon Stock of European Beech Forest; A Case at M. Pizzalto, Italy. APCBEE Procedia, 1, pp.159-168.  https://doi.org/10.1016/j.apcbee.2012.03.026

Google Scholar

7. Blood, A., Starr, G., Escobedo, F., Chappelka, A. and Staudhammer, C., 2016. How Do Urban Forests Compare? Tree Diversity in Urban and Periurban Forests of the Southeastern US. Forests, 7(6), p.120.  https://doi.org/10.3390/f7060120

Google Scholar

8. Canetti, A., Garrastazu, M.C., de Mattos, P.P., Braz, E.M. and Netto, S.P., 2018. Understanding multi-temporal urban forest cover using high resolution images. Urban Forestry & Urban Greening, 29, pp.106-112.  https://doi.org/10.1016/j.ufug.2017.10.020

Google Scholar

9. Chavan, B.L. and Rasal, G.B., 2010. Sequestered standing carbon stock in selective tree species grown in University campus at Aurangabad, Maharashtra, India. International Journal of Engineering Science and Technology, 2(7), pp.3003-3007.

Google Scholar

10. Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T. and Lescure, J.P., 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, pp.87-99.  https://doi.org/10.1007/s00442-005-0100-x

Google Scholar

11. Chaurasia, S. and Munoth, N. 2022. Carbon Sequestration Potential of Urban Trees: A Case of Kolar Area in Bhopal City, India. Journal of The Institution of Engineers (India): Series A, 103(2), 359-374.  https://doi.org/10.1007/s40030-022-00621-9

Google Scholar

12. Cordero, L.D.P. and Kanninen, M., 2002. Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica. Forest Ecology and Management, 165(1-3), pp.1-9. https://doi.org/10.1016/S0378-1127(01)00627-2

Google Scholar

13. De la Barrera, F. and Henríquez, C., 2017. Vegetation cover change in growing urban agglomerations in Chile. Ecological Indicators, 81, pp.265-273.  https://doi.org/10.1016/j.ecolind.2017.05.067

Google Scholar

14. Dolan, R.W., Aronson, M.F. and Hipp, A.L., 2017. Floristic response to urbanization: Filtering of the bioregional flora in Indianapolis, Indiana, USA. American Journal of Botany, 104(8), pp.1179-1187.  https://doi.org/10.3732/ajb.1700136

Google Scholar

15. Duinker, P.N., Ordóñez, C., Steenberg, J.W., Miller, K.H., Toni, S.A. and Nitoslawski, S.A., 2015. Trees in Canadian cities: Indispensable life form for urban sustainability. Sustainability, 7(6), pp.7379-7396.  https://doi.org/10.3390/su7067379

Google Scholar

16. Easterling, D.R., Karl, T.R., Gallo, K.P., Robinson, D.A., Trenberth, K.E. and Dai, A., 2000. Observed climate variability and change of relevance to the biosphere. Journal of Geophysical Research: Atmospheres, 105(D15), pp.20101-20114.

Google Scholar

17. FSI, 2021. Carbon stock in India’s forests: India State of forest report, Forest Survey of India, Dehradun, Uttarakhand, India.

Google Scholar

18. Gandhi, D.S. and Sundarapandian, S., 2017. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India. Environmental monitoring and assessment, 189, pp.1-18.  https://doi.org/10.1007/s10661-017-5899-1

Google Scholar

19. Grêt-Regamey, A., Altwegg, J., Sirén, E.A., Van Strien, M.J. and Weibel, B., 2017. Integrating ecosystem services into spatial planning-A spatial decision support tool. Landscape and Urban Planning, 165, pp.206-219.  https://doi.org/10.1016/j.landurbplan.2016.05.003

Google Scholar

20. Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X. and Briggs, J.M., 2008. Global change and the Ecology of cities. science, 319(5864), pp.756-760.  https://doi.org/10.1126/science.1150195

Google Scholar

21. IPCC 2001. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. and Johnson, C.A., (eds), Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York.

Google Scholar

22. Konijnendijk, C.C., Sadio, S., Randrup, T.B. and Schipperijn, J., 2004. Urban and peri-urban forestry in a development context-strategy and implementation. Journal of arboriculture, 30(5), pp.269-276.  https://doi.org/10.48044/jauf.2004.032

Google Scholar

23. Kumar, R. and Adhikari, B.S., 2022. Temporal changes in biomass production across different plant communities in alpine meadows of Tungnath, Garhwal Himalaya. Indian Journal of Forestry, 45(3), pp.119-125.  https://doi.org/10.54207/bsmps1000-2023-92SW98

Google Scholar

24. Kuruneri-Chitepo, C. and Shackleton, C.M., 2011. The distribution, abundance and composition of street trees in selected towns of the Eastern Cape, South Africa. Urban Forestry & Urban Greening, 10(3), pp.247-254.  https://doi.org/10.1016/j.ufug.2011.06.001

Google Scholar

25. Lavista, L., Prasetyo, L.B. and Hermawan, R., 2016. Dynamics change of the above carbon stocks in Bogor Agricultural University, Darmaga campus. Procedia Environmental Sciences, 33, pp.305-316.  https://doi.org/10.1016/j.proenv.2016.03.081

Google Scholar

26. Liu, C. and Li, X., 2012. Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry & Urban Greening, 11(2), pp.121-128.  https://doi.org/10.1016/j.ufug.2011.03.002

Google Scholar

27. Loughner, C.P., Allen, D.J., Zhang, D.L., Pickering, K.E., Dickerson, R.R. and Landry, L. 2012. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. Journal of Applied Meteorology and Climatology, 51(10), pp.1775-1793.  https://doi.org/10.1175/JAMC-D-11-0228.1

Google Scholar

28. Majumdar, T. and Selvan, T., 2018. Carbon storage in trees of urban and peri-urban forests of Agartala, Tripura. Journal of Advance Research & Applied Science, 5(2), pp.715-731.

Google Scholar

29. Mani, S. and Parthasarathy, N., 2007. Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and bioenergy, 31(5), pp.284-290.  https://doi.org/10.1016/j.biombioe.2006.08.006

Google Scholar

30. McPherson, E.G., Xiao, Q. and Aguaron, E., 2013. A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landscape and Urban Planning, 120, pp.70-84.  https://doi.org/10.1016/j.landurbplan.2013.08.005

Google Scholar

31. MoEFCC, 2018. India: Second Biennial Update Report to the United Nations Framework Convention on Climate Change. Ministry of Environment, Forest and Climate Change, Government of India, Delhi.

Google Scholar

32. Nabuurs, G.J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L. and Lindner, M., 2017. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests, 8(12), pp.484.  https://doi.org/10.3390/f8120484

Google Scholar

33. Nagendra, H. and Gopal, D., 2011. Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India. Urban Ecosystems, 14, pp.211-223.  https://doi.org/10.1007/s11252-010-0148-1

Google Scholar

34. Nguyen, V.L., 2012. Estimation of biomass for calculating carbon storage and CO2 sequestration using remote sensing technology in Yok Don National Park, Central Highlands of Vietnam. Journal of Vietnamese Environment, 3(1), pp.14-18.  https://doi.org/10.13141/jve.vol3.no1.pp14-18

Google Scholar

35. Nowak, D.J., 1994. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In McPherson, E.G., Nowak, D.J. and Rowntree, R.A. (eds), Chicago’s urban forest ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. US Department of Agriculture, Forest Service, pp.83-94.

Google Scholar

36. Nowak, D.J. and Crane, D.E., 2002. Carbon storage and sequestration by urban trees in the USA. Environmental pollution, 116(3), pp.381-389.  https://doi.org/10.1016/S0269-7491(01)00214-7

Google Scholar

37. Nowak, D.J., Greenfield, E.J., Hoehn, R.E. and Lapoint, E., 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental pollution, 178, pp.229-236.  https://doi.org/10.1016/j.envpol.2013.03.019

Google Scholar

38. Oehri, J., Schmid, B., Schaepman-Strub, G. and Niklaus, P.A., 2017. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proceedings of the National Academy of Sciences, 114(38), pp.10160-10165.  https://doi.org/10.1073/pnas.1703928114

Google Scholar

39. Parsa, V.A., Salehi, E., Yavari, A.R. and van Bodegom, P.M., 2019. Analyzing temporal changes in urban forest structure and the effect on air quality improvement. Sustainable Cities and Society, 48, 101548.  https://doi.org/10.1016/j.scs.2019.101548

Google Scholar

40. Pataki, D.E., Alig, R.J., Fung, A.S., Golubiewski, N.E., Kennedy, C.A., McPherson, E.G. and Romero Lankao, P., 2006. Urban ecosystems and the North American carbon cycle. Global Change Biology, 12(11), pp.2092-2102.  https://doi.org/10.1111/j.1365-2486.2006.01242.x

Google Scholar

41. Paustian, K., Cole, C.V., Sauerbeck, D. and Sampson, N., 1998. CO2 mitigation by agriculture: An overview. Climatic Change, 40, pp.135-162.  https://doi.org/10.1023/A:1005347017157

Google Scholar

42. Pearson, T., Walker, S. and Brown, S., 2005. Source Book for LULUCF Projects. Winrock International, Arlington, Virginia, US. Available on the internet: http:/www.carbonfinance.org, p.49.

Google Scholar

43. Pedersen, J.T., van Vuuren, D., Gupta, J., Santos, F.D., Edmonds, J. and Swart, R., 2022. IPCC emission scenarios: How did critiques affect their quality and relevance 1990-2022?. Global Environmental Change.  https://doi.org/10.1016/j.gloenvcha.2022.102538

Google Scholar

44. Russo, A., Escobedo, F.J., Timilsina, N. and Zerbe, S., 2015. Transportation carbon dioxide emission offsets by public urban trees: A case study in Bolzano, Italy. Urban Forestry & Urban Greening, 14(2), pp.398-403.  https://doi.org/10.1016/j.ufug.2015.04.002

Google Scholar

45. Sampson, R.N., Moll, G.A. and Kielbaso, J.J., 1992. Opportunities to increase urban forests and the potential impacts on carbon storage and conservation. In Forests and Global Change, Volume 1: Opportunities for Increasing Forest Cover, Sampson, R.N. and D. Hair (eds), American Forests, Washington DC, pp.51-72.

Google Scholar

46. Schimel, D.S., 1995. Terrestrial ecosystems and the carbon cycle. Global change biology, 1(1), pp.77-91.  https://doi.org/10.1111/j.1365-2486.1995.tb00008.x

Google Scholar

47. Shackleton, C., 2016. Do indigenous street trees promote more biodiversity than alien ones? Evidence using mistletoes and birds in South Africa. Forests, 7(7), pp.134.  https://doi.org/10.3390/f7070134

Google Scholar

48. Sicard, P. and Dalstein-Richier, L., 2015. Health and vitality assessment of two common pine species in the context of climate change in southern Europe. Environmental Research, 137, pp.235-245.  https://doi.org/10.1016/j.envres.2014.12.025

Google Scholar

49. Simpson, J.R. and McPherson, E.G., 2001. Tree planting to optimize energy and CO2 benefits. In Investing in Natural Capital. Washington DC: Proceedings of the 2001 National Urban Forest Conference, pp.5-8.

Google Scholar

50. Singh, A.K., Nair, V.K., Singh, H., Mishra, R.K. and Singh, J.S., 2022. Carbon Storage and Carbon Dioxide Sequestration by Urban Tree Cover: Case Study From Varanasi, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92(3), pp.647-657.  https://doi.org/10.1007/s40011-022-01348-0

Google Scholar

51. Singh, A.K., Singh, H. and Singh, J.S., 2018. Plant diversity in cities. Current Science, 115(3), pp.428-435.  https://doi.org/10.18520/cs/v115/i3/428-435

Google Scholar

52. Singh, H., Singh, A.K. and Singh, J.S., 2019. Contribution of street trees to carbon sequestration: A case study from Varanasi, India. International journal of plant and environment, 5(01), pp.9-15.  https://doi.org/10.18811/ijpen.v5i01.2

Google Scholar

53. Strohbach, M.W. and Haase, D., 2012. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landscape and Urban Planning, 104(1), pp.95-104.  https://doi.org/10.1016/j.landurbplan.2011.10.001

Google Scholar

54. Sudha, P. and Ravindranath, N.H., 2000. A study of Bangalore urban forest. Landscape and Urban Planning, 47(1-2), pp.47-63.  https://doi.org/10.1016/S0169-2046(99)00067-5

Google Scholar

55. Sundarapandian, S.M., Amritha, S., Gowsalya, L., Kayathri, P., Thamizharasi, M., Dar, J.A. and Subashree, K., 2014. Biomass and carbon stock assessments of woody vegetation in Pondicherry University campus, Puducherry. International Journal of Environmental Biology, 4(2), pp.87-99.

Google Scholar

56. Tang, Y., Chen, A. and Zhao, S., 2016. Carbon storage and sequestration of urban street trees in Beijing, China. Frontiers in Ecology and Evolution, 4, p.53.  https://doi.org/10.3389/fevo.2016.00053

Google Scholar

57. Thakur, A.K., Rawat, R.S. and Gautam, S., 2023. Enhancing ecosystem services through promotion of Homegarden: A case study of Wadi system in Budhni, Madhya Pradesh, India. Indian Journal of Forestry, 46(2), pp.72-77.  https://doi.org/10.54207/bsmps1000-2023-OL1O8M

Google Scholar

58. Van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jackson, R.B. and Randerson, J.T., 2009. CO2 emissions from forest loss. Nature geoscience, 2(11), pp.737-738.  https://doi.org/10.1038/ngeo671

Google Scholar

59. Verma, R.K., Verma, R. and Chauhan, H., 2022. Assessment of biomass and soil carbon stock in different forest landuse systems of Lahaul Valley, Himachal Pradesh, India. Indian Journal of Forestry, 45(1), pp.14-19.  https://doi.org/10.54207/bsmps1000-2022-N71HM6

Google Scholar

60. Velasco, L.M., 2017. A Study on Variation in Leaf Physiognomy of City Trees in Relation to Temperature. M.Sc. (Thesis), University of California, Riverside.

Google Scholar

61. WHO/UNICEF Joint Water Supply, & Sanitation Monitoring Programme. 2015. Progress on sanitation and drinking water: 2015 update and MDG assessment. World Health Organization.

Google Scholar

62. Wiemann, M.C. and Green, D.W., 2007. Estimating Janka Hardness from Specific Gravity for Tropical and Temperate Species.  https://doi.org/10.2737/FPL-RP-643

Google Scholar

63. Zhao, M., Kong, Z.H., Escobedo, F.J. and Gao, J., 2010. Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. Journal of environmental management, 91(4), pp.807-813.  https://doi.org/10.1016/j.jenvman.2009.10.010

Google Scholar

64. Zhao, Q., Poulson, S.R., Obrist, D., Sumaila, S., Dynes, J.J., McBeth, J.M. and Yang, Y., 2016. Iron-bound organic carbon in forest soils: quantification and characterization. Biogeosciences, 13(16), pp.4777-4788.  https://doi.org/10.5194/bg-13-4777-2016

Google Scholar

About this article

How to cite

Anbarashan, M., Balachandran, N., Maheswari, P.U. and Ilavarasy, D., 2024. Biomass, carbon stock and carbon dioxide sequestration by trees outside forests: A case study from Puducherry, India . Indian Journal of Forestry, 47(1), pp.1-11. https://doi.org/10.54207/bsmps1000-2024-GLMV02

Publication History

Manuscript Received on 29 May 2023

Manuscript Revised on 19 June 2024

Manuscript Accepted on 26 June 2024

Manuscript Published on 01 July 2024

Share this article

Anyone you share the following link with will be able to read this content: