1. Aaheim, A., Chaturvedi, R. K. and Sagadevan, A. A. (2011). Integrated modelling approaches to analysis of climate change impacts on forests and forest management. Mitigation and adaptation strategies for global change, 16(2), 247-266 https://doi.org/10.1007/s11027-010-9254-x
2. Arora, V. K. and Boer, G. J. (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11(1), 39-59 https://doi.org/10.1111/j.1365-2486.2004.00890.x
3. Ashcroft, M. B., Chisholm, L. A. and French, K. O. (2009). Climate change at the landscape scale: predicting fine grained spatial heterogeneity in warming and potential refugia for vegetation. Global Change Biology, 15 (3), 656-667 https://doi.org/10.1111/j.1365-2486.2008.01762.x
4. Bachelet, D., Lenihan, J. M., Daly, C., Neilson, R. P., Ojima, D. S., and Parton, W. J. (2001). MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. Pacific Northwest Station General Technical Report PNW-GTR-508 https://doi.org/10.2737/PNW-GTR-508
5. Bala, G., Gopalakrishnan, R., Jayaraman, M., Nemani, R. and Ravindranath, N. H. (2011). CO2-fertilization and potential future terrestrial carbon uptake in India. Mitigation and Adaptation Strategies for Global Change, 16 (2), 143-160 https://doi.org/10.1007/s11027-010-9260-z
6. Bonan, G. B. (1996). A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide. NCAR Technical Note NCAR/TN-417+ STR
7. Brovkin, V., Ganopolski, A. and Svirezhev, Y. (1997). A continuous climate-vegetation classification for use in climate-biosphere studies. Ecological Modelling, 101 (2-3), 251-261 https://doi.org/10.1016/S0304-3800(97)00049-5
8. Champion, H. G. and Seth, S. K. (1968). A Revised Survey of the Forest Types of India. Nataraj Publishers. https://www.cabdirect.org/cabdirect/abstract/19720603193. Accessed 15 September 2017
9. Chaturvedi, R. K. and Gopalakrishnan, R. (2011). Impact of climate change on Indian forests: a dynamic vegetation modeling approach. Adaptation Strategies for http://link.springer.com/article/10.1007/s11027-010-9257-7 https://doi.org/10.1007/s11027-010-9257-7
10. Cox, P. M. (2001). Description of the TRIFFID dynamic global vegetation model. Hadley Centre technical note, 24, 1-16
11. Deshingkar, P., Bradley, P. N., Chadwick, M. J. and Leach, G. (1997). Adapting to climate change in a forest-based land use system: a case study of Himachal Pradesh, India. Atmospheric Environment Issues in Developing Countries Series (Sweden)
12. Devaraju, N., Cao, L., Bala, G., Caldeira, K. and Nemani, R. (2011). A model investigation of vegetation-atmosphere interactions on a millennial timescale. Biogeosciences, 8 (12), 3677-3686 https://doi.org/10.5194/bg-8-3677-2011
13. Díaz, S. and Cabido, M. (1997). Plant functional types and ecosystem function in relation to global change. Journal of vegetation science, 8(4), 463-474 https://doi.org/10.2307/3237198
14. Dobrowski, S. Z., Abatzoglou, J. T., Greenberg, J. A. and Schladow, S. G. (2009). How much influence does landscape-scale physiography have on air temperature in a mountain environment. Agricultural and Forest Meteorology, 149(10), 1751-1758 https://doi.org/10.1016/j.agrformet.2009.06.006
15. Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S. and Haxeltine, A. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4), 603-628 https://doi.org/10.1029/96GB02692
16. Franklin, J., Davis, F. W., Ikegami, M., Syphard, A. D., Flint, L. E., Flint, A. L. and Hannah, L. (2013). Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Global change biology, 19(2), 473-483 https://doi.org/10.1111/gcb.12051
17. Friend, A. D., Stevens, A. K., Knox, R. G. and Cannell, M. G. R. (1997). A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3. 0). Ecological Modelling, 95(2-3), 249-287 https://doi.org/10.1016/S0304-3800(96)00034-8
18. Gopalakrishnan, R., Jayaraman, M., Bala, G. and Ravindranath, N. H. (2011a). Climate change and Indian forests. Current Science, 348-355
19. Gopalakrishnan, R., Jayaraman, M., Swarnim, S., Chaturvedi, R. K., Bala, G. and Ravindranath, N. H. (2011b). Impact of climate change at species level: a case study of teak in India. Mitigation and Adaptation Strategies for Global Change, 16(2), 199-209 https://doi.org/10.1007/s11027-010-9258-6
20. Hansen, A. J., Neilson, R. P., Dale, V. H., Flather, C. H., Iverson, L. R., Currie, D. J. (2001). Global Change in Forests: Responses of Species, Communities, and Biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity. BioScience, 51(9), 765-779 https://doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2
21. Haxeltine, A. and Prentice, I. C. (1996). BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4), 693-709 https://doi.org/10.1029/96GB02344
22. Houghton, R. A. (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus B, 51(2), 298-313 https://doi.org/10.3402/tellusb.v51i2.16288
23. Hunt Jr, E. R. and Running, S. W. (1992). Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC.[ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation]
24. Second National Communication to the United Nations Framework Convention on Climate Change. (2012). Ministry of Environment and Forests
25. Kelly, C. K. (1996). Identifying plant functional types using floristic data bases: Ecological correlates of plant range size. Journal of Vegetation science, 7(3), 417-424 https://doi.org/10.2307/3236285
26. Kraft, N. J. B., Valencia, R. and Ackerly, D. D. (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322 (5901), 580-582 https://doi.org/10.1126/science.1160662
27. Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T., Lenters, J. D., (2000). Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14(3), 795-825 https://doi.org/10.1029/1999GB001138
28. Levis, S., Bonan, B., Vertenstein, M. and Oleson, K. (2017). The community land model's dynamic global vegetation model (CLM-DGVM): technical description and user's guide
29. Lookingbill, T. R. and Urban, D. L. (2003). Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agricultural and Forest Meteorology, 114(3), 141-151 https://doi.org/10.1016/S0168-1923(02)00196-X
30. Neilson, R. (1995). A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 5 (2), 362-385 https://doi.org/10.2307/1942028
31. Parton, W. J., Schimel, D. S., Cole, C. V. and Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5), 1173-1179 https://doi.org/10.2136/sssaj1987.03615995005100050015x
32. Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles, 7(4), 785-809 https://doi.org/10.1029/93GB02042
33. Parton, W. J., Stewart, J. W. B. and Cole, C. V. (1988). Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 5(1), 109-131 https://doi.org/10.1007/BF02180320
34. Payette, S. (1992). Fire as a controlling process in the North American boreal forest. A systems analysis of the global boreal forest, 144-169 https://doi.org/10.1017/CBO9780511565489.006
35. Peng, C. (2000). From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecological Modelling. http://www.sciencedirect.com/science/article/pii/S0304380000003483 https://doi.org/10.1016/S0304-3800(00)00348-3
36. Prentice, I. C. (1989). Developing a global vegetation dynamics model: results of an IIASA summer workshop
37. Quillet, A., Peng, C. and Garneau, M. (2010). Toward dynamic global vegetation models for simulating vegetation-climate interactions and feedbacks: recent developments, limitations, and future challenges. Environmental Reviews, 18(NA), 333-353 https://doi.org/10.1139/A10-016
38. Raich, J. W., Rastetter, E. B., Melillo, J. M., Kicklighter, D. W., Steudler, P. A., Peterson, B. J. (1991). Potential net primary productivity in South America: application of a global model. Ecological applications, 1(4), 399-429 https://doi.org/10.2307/1941899
39. Raison, J., Eamus, D., Gifford, R. and McGrath, J. (2007). The feasibility of forest free air CO2 enrichment (FACE) experimentation in Australia. Australian Greenhouse Office, Canberra (during 2010 renamed the Department of Climate Change and Energy Efficiency), 110pp.(ISBN: 987-1-921297-68-7)
40. Ravindranath, N. H., Aaheim, A. and Sathaye, J. (2011). Climate change and forests in India: Note from the guest editors. Mitigation and Adaptation Strategies for Global Change, 16(2), 117-118 https://doi.org/10.1007/s11027-010-9280-8
41. Ravindranath, N. H., Joshi, N. V, Sukumar, R. and Saxena, A. (2006). Impact of climate change on forests in India. Current science, 354-361
42. Ravindranath, N. H., Somashekhar, B. S. and Gadgil, M. (1997). Carbon flow in Indian forests. Climatic Change, 35(3), 297-320 https://doi.org/10.1023/A:1005303405404
43. Ravindranath, N. H. and Sukumar, R. (1996). Impacts of climate change on forest cover in India. The Commonwealth Forestry Review, 76-79
44. Ravindranath, N. H. and Sukumar, R. (1998). Climate change and tropical forests in India. In Potential Impacts of Climate Change on Tropical Forest Ecosystems (pp. 423-441). Springer https://doi.org/10.1007/978-94-017-2730-3_21
45. Running, S. W. and Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42 (2), 125-154 https://doi.org/10.1016/0304-3800(88)90112-3
46. Sato, H., Itoh, A. and Kohyama, T. (2007). SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecological Modelling, 200(3), 279-307 https://doi.org/10.1016/j.ecolmodel.2006.09.006
47. Shipley, B., Vile, D. and Garnier, É. (2006). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. science, 314(5800), 812-814 https://doi.org/10.1126/science.1131344
48. Singh, S. P. (2014). Attributes of Himalayan forest ecosystems: They are not Temperate Forests. In Proceedings of Indian Science Academy (Vol. 80, pp. 221-233) https://doi.org/10.16943/ptinsa/2014/v80i2/55103
49. Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model . Glob. Chang. Biol., 9 (2), 161-185 https://doi.org/10.1046/j.1365-2486.2003.00569.x
50. Smith, T. M., Shugart, H. H. and Woodward, F. I. (1997). Plant functional types: their relevance to ecosystem properties and global change (Vol. 1). Cambridge University Press
51. State strategy & action plan on climate change Himachal Pradesh. (2012). Department of Environment, Science & Technology
52. Upgupta, S., Sharma, J., Jayaraman, M., Kumar, V. and Ravindranath, N. H. (2015). Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India. Clim. Risk Manag., 10, 63-76 https://doi.org/10.1016/j.crm.2015.08.002
53. Woodward, F. I. and Cramer, W. (1996). Plant functional types and climatic change: introduction. Journal of Vegetation Science, 7(3), 306-308 https://doi.org/10.1111/j.1654-1103.1996.tb00489.x