Research Article | Published: 30 August 2024

Allelopathic effects of Ageratum conyzoides leaf aqueous extract on the seed germination along with seedling growth of Phaseolus vulgaris and Cicer arietinum

Lakhi Ram Dangwal, Minakshi Rawat and Tarseem Lal

Indian Journal of Forestry | Volume: 47 | Issue: 2 | Page No. 77-85 | 2024
DOI: https://doi.org/10.54207/bsmps1000-2024-JL1Z5S | Cite this article

Abstract

The agricultural productivity degradation due to toxic weed is one of the various causes of economic losses in developing countries. Ageratum conyzoides L. is major crop weed that is a threat to native flora as it competes with crops for the same resources. The current study was undertaken to investigate the allelopathic action of A. conyzoides on germination and seedling growth of Phaseolus vulgaris L. and Cicer arietinum L. Aqueous extracts of weed at various concentration (control, 10%, 20%, 30%, 50%) were obtained to assess their impacts on test crops. In this experiment, the maximum reduction in seed germination was 37% and 50% for P. vulgaris and C. arietinum respectively. The higher reduction in plumule length (3 cm) and radicle length (2 cm) of P. vulgaris and plumule length (3 cm) and radicle length (2 cm) of C. arietinum was observed at 50% concentration of weed extracts. The phytotoxicity of the A. conyzoides for both crops were increased with elevated concentration and decreased at the low concentration of weed extract. Therefore, the present results revealed that the weed phytotoxicity was concentrations depended. An appropriate weed control strategy is essential to mitigate weed impacts on crops.

Keywords

Agriculture crops, Allelochemicals, Allelopathy, Phytotoxicity, Seedling vigor index, Tolerance index

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Abdul‐Baki, A.A. and Anderson, J.D., 1973. Relationship between decarboxylation of glutamic acid and vigor in soybean seed. Crop Science, 13(2), pp.227-232.  https://doi.org/10.2135/cropsci1973.0011183X001300020023x

Google Scholar

2. Agbafor, K.N., Engwa, G.A. and Obiudu, I.K., 2015. Analysis of chemical composition of leaves and roots of Ageratum conyzoides. International Journal of Current Research and Academic Review, 3(11), pp.60-65.

Google Scholar

3. Amadi, B.A., Duru, M.K.C. and Agomuo, E.N., 2012. Chemical profiles of leaf, stem, root and flower of Ageratum conyzoidesAsian Journal of Plant Science and Research, 2(4), pp.428-432.

Google Scholar

4. Anwar, S., Naseem, S., Karimi, S., Asi, M. R., Akrem, A. and Ali, Z., 2021. Bioherbicidal activity and metabolic profiling of potent allelopathic plant fractions against major weeds of wheat-Way forward to lower the risk of synthetic herbicides. Frontiers in Plant Science, 12, 632390.  https://doi.org/10.3389/fpls.2021.632390

Google Scholar

5. AOSA., 1983. Seed Vigor Hand Texting Book. Association of Official Seed Analysis.

6. AOSA., 2017. Rules For Testing Seeds. Volume -3, Association of Official Seed Analysts.

Google Scholar

7. Bashar, H.K., Juraimi, A.S., Ahmad-Hamdani, M.S., Uddin, M.K., Asib, N., Anwar, M.P. and Hossain, A., 2023. Evaluation of allelopathic effects of Parthenium hysterophorus L. methanolic extracts on some selected plants and weeds. Plos One, 18(1), e0280159.  https://doi.org/10.1371/journal.pone.0280159

Google Scholar

8. Batish, D.R., Singh, H.P., Kaur, S., Arora, V. and Kohli, R.K., 2004. Allelopathic interference of residues of Ageratum conyzoidesJournal of Plant Diseases and Protection, 19(Spl.), pp.293-299.

Google Scholar

9. Bhatt, B.P., Tomar, J.M.S. and Misra, L.K., 2001. Allelopathic effects of weeds on germination and growth of legumes and cereal crops of North Eastern Himalayas. Allelopathy Journal, 8(2), pp.225-232.

Google Scholar

10. Burnside, O.C., Wiens, M.J., Holder, B.J., Weisbere, S., Ristau, E.A., Johnson, M.M. and Cameron, J.H., 1998. Critical periods for weed control in dry beans (Phaseolus vulgaris). Weed Science, 46(3), pp.301-306.  https://doi.org/10.1017/S0043174500089451

Google Scholar

11. Chandra, S., Chatterjee, P., Dey, P. and Bhattacharya, S., 2012. Allelopathic effect of Ashwagandha against the germination and radicle growth of Cicer arietinum and Triticum aestivum. Pharmacognosy Research, 4(3), p.166.

Google Scholar

12. Chou, C.H. and Muller, C.H., 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, pp.1020(1–16).  https://doi.org/10.3389/fpls.2015.01020

Google Scholar

13. Chion, C.H. and Muller, C.H., 1972. Allelopathic mechanism of Arctostaphylos glandulosa variety Zazaeisis. American Midland Naturalist, 88, pp.324-347.  https://doi.org/10.2307/2424358

14. Dangwal, L.R., Sharma, A., Singh, A., Rana, C.S. and Singh, T., 2011. Weed flora of S.R.T. Campus Badshahithaul Tehri Garhwal (H.N.B Garhwal Central University, Uttarakhand), India. Pakistan Journal of Weed Science Research, 17(4), pp.387-396.

Google Scholar

15. Dar, H., Abbas, A., Salam, I.U., Zohra, R.R., Qureshi, I.A. and Bashir, F., 2023. Allelopathic effect of Euphorbia hirta (Pig weed) extracts and powder on seedling growth, chlorophyll and protein content of Cicer arientinum (Black gram) in Pakistan. Pakistan Journal of Botany, 55(2), pp.643-648.  https://doi.org/10.30848/PJB2023-2(9)

Google Scholar

16. Dhar, V. and Gurha, S.N., 1998. Integrated Management of chickpea diseases. Rajeev, K., Upadhyay, K.G., Mukerji, B.P., Chamola and Dubey, O.P. (eds), APH Pub. Co., New Delhi, p.249.

Google Scholar

17. Duke, S.O., 2015. Proving allelopathy in crop–weed interactions. Weed Science63(SP1), pp.121-132.  https://doi.org/10.1614/WS-D-13-00130.1

Google Scholar

18. Etminani, A., Mohammadi, K. and Saberali, S.F., 2021. Effect of organic and inorganic amendments on growth indices and seed yield of red kidney bean (Phaseolus vulgaris) in competition with Amaranthus retroflexusJournal of Plant Nutrition, 44(3), pp.421-437.  https://doi.org/10.1080/01904167.2020.1822398

Google Scholar

19. Ghimire, B.K., Hwang, M.H., Sacks, E.J., Yu, C.Y., Kim, S.H. and Chung, I.M., 2020. Screening of allelochemicals in Miscanthus sacchariflorus extracts and assessment of their effects on germination and seedling growth of common weeds. Plants, 9(10), pp.1313. https://doi.org/10.3390/plants9101313

Google Scholar

20. Horvitz, N., Wang, R., Wan, F.H. and Nathan, R., 2017. Pervasive human‐mediated large‐scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. Journal of Ecology, 105(1), pp.85-94.  https://doi.org/10.1111/1365-2745.12692

Google Scholar

21. Idu, M. and Oghale, O.U., 2013. Studies on the allelopathic effect of aqueous extract of Ageratum conyzoides (Asteraceae) on seedling growth of Sesamum indicum L. (Pedaliaceae). International Journal of Science, Environment and Technology, 2(6), pp.1185-1195.

22. Inderjit, and del Moral, R., 1997. Is separating resource competition from allelopathy realistic. The Botanical Review, 63, pp.221-230.  https://doi.org/10.1007/BF02857949 

Google Scholar

23. Jali, P., Samal, I.P., Jena, S. and Mahalik, G., 2021. Morphological and biochemical responses of Macrotyloma uniflorum (Lam.) Verdc. to allelopathic effects of Mikania micrantha Kunth extracts. Heliyon, 7, e07822 (1–7).  https://doi.org/10.1016/j.heliyon.2021.e07822

Google Scholar

24. Joshi, N. and Joshi, A., 2016. Allelopathic effects of weed extracts on germination of wheat. Annals of Plant Sciences, 5, pp.1330-1334.  https://doi.org/10.21746/aps.2016.05.001

Google Scholar

25. Kong, C., Hu, F. and Xu, X., 2002. Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. Journal of Chemical Ecology, 28, pp.1173-1182.  https://doi.org/10.1023/A:1016229616845

Google Scholar

26. Kouam, E.B. and Tsague-Zanfack, A.B., 2020. Effect of plant density on growth and yield attributes of common bean (Phaseolus vulgaris L.) genotypes. Notulae Scientia Biologicae, 12(2), pp.399- 408.  https://doi.org/10.15835/nsb12210519

Google Scholar

27. Kumar, N.K.H. and Jagannath, S., 2015. Assessment of allelopathic efficacy of Parthenium hysterophorus L. plant parts on seed germination and seedling growth of Phaseolus vulgaris L. Brazilian Journal of Biological Sciences, 2(3), pp.85-90.

Google Scholar

28. Lalbiakdika, I., Lalnunmawia, F. and Lalruatsanga, H. 2022. Allelopathic effect of common weeds on germination and seedling growth of rice in wetland paddy fields of Mizoram, India. Plant, Soil and Environment, 68(8), pp.393-400.  https://doi.org/10.17221/167/2022-PSE

Google Scholar

29. Langenheim, J.H., 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. Journal of Chemical Ecology, 20, pp.1223-1280.  https://doi.org/10.1007/BF02059809

Google Scholar

30. Li, J. and Jin, Z., 2010. Potential allelopathic effects of Mikania micrantha on the seed germination and seedling growth of Coix lacryma‐jobiWeed Biology and Management, 10(3), pp.194-201.  https://doi.org/10.1111/j.1445-6664.2010.00384.x

Google Scholar

31. Liza, K.C. and Ram, A.M., 2017. Allelopathic effect of extract of Mikania micrantha on seed germination and seedling growth of Melia azedarachJournal of Physical Science and Environmental Studies, 3, pp.52-57.

Google Scholar

32. Mengal, B.S., Baloch, S.U., Sun, Y., Bashir, W., Wu, L. R., Shahwani, A.R. and Baber, S., 2015. The influence of allelopathic weeds extracts on weeds and yield of wheat (Triticum aestivum L.). Journal of Biology, Agriculture and Healthcare, 5, pp.218-228.

Google Scholar

33. Muscolo, A., Panuccio, M.R. and Sidari, M., 2001. The effect of phenols on respiratory enzymes in seed germination. Plant Growth Regulation, 35(1), pp.31-35.  https://doi.org/10.1023/A:1013897321852

Google Scholar

34. Okereke, S.C., Chukwudoruo, C.S. and Nwaokezie, C.O., 2017. Phytochemical screening using GC-FID and sub-chronic assessment of Hydroethanolic leaf extract of Ageratum conyzoides Linn. on albino rats. Journal of Medicinal Plants Studies, 5, pp.282-287.

Google Scholar

35. Oraon, S. and Mondal, S., 2022. Allelopathic impacts of an agroforestry tree species (Streblus asper lour.) on seed germination and seedling growth of chickpea. Legume Research-An International Journal, 45(10), pp.1295-1300.  https://doi.org/10.18805/LR-4679

Google Scholar

36. Patanè, C., Pellegrino, A., Cosentino, S.L. and Testa, G., 2023. Allelopathic effects of Cannabis sativa L. aqueous leaf extracts on seed germination and seedling growth in durum wheat and barley. Agronomy, 13(2), pp.454-463.  https://doi.org/10.3390/agronomy13020454

Google Scholar

37. POWO (Plants of the World Online)., 2023, POWO, Board of Trustees of the Royal Botanic Gardens, Kew, Accessed on Oct, 10, 2023. https://powo.science.kew.org/

38. Ray, D., Behera, M.D. and Jacob, J., 2019. Comparing invasiveness of native and non-native species under changing climate in North-East India: Ecological niche modelling with plant types differing in biogeographic origin. Environmental Monitoring and Assessment, 191, pp.1-13. https://link.springer.com/article/10.1007%2Fs10661-019-7685-8

Google Scholar

39. Rodriguez, S. and Cepero, S., 1984. Number of seeds produced by some weed species. Centro Agricola (Cuba).

Google Scholar

40. Sauerborn, J. and Koch, W, 1988. Untersuchungen zur keimungsbioiogie von sech tropischen Segetalaten. Weed Research, 28(1), pp.47-52.  https://doi.org/10.1111/j.1365-3180.1988.tb00784.x

Google Scholar

41. Scavo, A., Restuccia, A., Pandino, G., Onofri, A. and Mauromicale, G., 2018. Allelopathic effects of Cynara cardunculus L. leaf aqueous extracts on seed germination of some Mediterranean weed species. Italian Journal of Agronomy, 13, pp.119-125.  https://doi.org/10.4081/ija.2018.1021

Google Scholar

42. Shruthi, H.R., Kumar, N.K.H. and Jagannath, S., 2014. Allelopathic potentialities of Azadirachta indica A.Juss. Aqueous leaf extract on early seed growth and biochemical parameters of Vigna radiate (L.) Wilczek. International Journal of Latest Research in Science and Technology, 3(3), pp.109-115.

Google Scholar

43. Singh, B., Uniyal, A.K., Bhatt, B.P. and Prasad, S., 2006. Effects of agroforestry tree spp. on crops. Allelopathy Journal, 18, pp.355-362.

Google Scholar

44. Singh, H.P., Batish, D.R., Kaur, S. and Kohli, R.K., 2003. Phytotoxic interference of Ageratum conyzoides with wheat (Triticum aestivum). Journal of Agronomy and Crop Science, 189(5), pp.341-346.  https://doi.org/10.1046/j.1439-037X.2003.00054.x

Google Scholar

45. Smithson, J.B., 1985. Chickpea (Cicer arietinum L.). Grain Legume Crops, pp.312-390.

46. Stamp, N., 2003. Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology, 78(1), pp.23-55.  https://doi.org/10.1086/367580

Google Scholar

47. Turner, R.G. and Marshall, C., 1972. The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. in relation to zinc tolerance. New Phytologist, 71(4), pp.671-676.  https://doi.org/10.1111/j.1469-8137.1972.tb01277.x 

Google Scholar

48. Vashishth, D.S., Bachheti, A., Bachheti, R.K. and Husen, A., 2023. Allelopathic effect of Callistemon viminalis’s leaves extract on weeds, soil features, and growth performance of wheat and chickpea plants. Journal of Plant Interactions, 18(1), 2248172.  https://doi.org/10.1080/17429145.2023.2248172

Google Scholar

49. Verma, M. and Rao, P.B., 2006. Allelopathic effect of four weed species extracts on germination, growth and protein in different varieties of Glycine max (L.) Merrill. Journal of Environmental Biology, 27(3), p.571.

Google Scholar

About this article

How to cite

Dangwal, L.R., Rawat, M. and Lal, T., 2024. Allelopathic effects of Ageratum conyzoides leaf aqueous extract on the seed germination along with seedling growth of Phaseolus vulgaris and Cicer arietinum. Indian Journal of Forestry, 47(2), pp.77-85. https://doi.org/10.54207/bsmps1000-2024-JL1Z5S

Publication History

Manuscript Received on 30 January 2024

Manuscript Revised on 08 August 2024

Manuscript Accepted on 12 August 2024

Manuscript Published on 30 August 2024

Share this article

Anyone you share the following link with will be able to read this content: