1. Acharya, B. (1999). Forest Biodiversity Assessment. A spatial analysis of tree species diversity of Nepal. International Institute for Aerospace Survey and Earth Science, Netherlands. 199 pages
2. Baishya, R., Barik, S.K. and Upadhaya, K. (2009). Distribution pattern of above-ground biomass in natural and plantation forersts of humid tropics in northeast India. Tropical Ecology. 50(2): 295-304
3. Bhadwal, S. and Singh, R. (2002). Carbon sequestration estimates for forestry options under different land-use scenarios in India. Current Science. 83(11): 1380-1386
4. Brown, S. and Lugo A.E. (1984). Biomass of tropical forests: a new estimate based on forest volumes. Science. 223:1290-1292 https://doi.org/10.1126/science.223.4642.1290
5. Brown, S.L. Schroeder, P. and Kern, J.S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology Management. 123:81-90 https://doi.org/10.1016/S0378-1127(99)00017-1
6. Cannell, M.G.R. (1984). Woody biomass of forest stands. Forest Ecology and Management. 8: 299-312 https://doi.org/10.1016/0378-1127(84)90062-8
7. Chanan. M. and Iriany. A. (2014). Estimating carbon storage on teak (Tectona grandis Linn. F). Journal of Environment and Earth Science. 4(3): 9-17
8. GEER, Gujarat Ecological Education and Research, Gandhinagar-382 007. Gujarat, India, http://timesofindia.indiatimes.com/cityahmedabad/Teak-absorbs-max-CO2-from-air-helps-checkglobalwarming/articleshow/51721842.cms?
9. Giri, N. Rawat, L. and Kumar, P. (2014). Assessment of biomass carbon stock in a Tectona grandis Linn F. plantation ecosystem of Uttarakhand, India. International Journal of Engineering Science Invention 3(5), 46-53
10. Hase H. and Foelster (1983). Impact of plantation forestry with teak (Tectona grandis) on the nutrient status of young alluvial soils of West Venezuela. Forest Ecology Management. 6(1): 33-57 https://doi.org/10.1016/0378-1127(83)90004-X
11. Hooda, P.S., Miller, A., and Edwards, A.C.(2007). The distribution of automobile catalyst-cast platinum, palladium and rhodium in soils adjacent to roads and their uptake by grass. Science of the Total Environment. 384: 384-392 https://doi.org/10.1016/j.scitotenv.2007.05.040
12. INCCA. (2010) Climate Change and India: A 4x4 Assessment, Government of India
13. IPCC. (2006). Guidelines for national greenhouse gas inventories. Japan: International Panel on Climate Change IGES
14. Jha, K. K. (1995). Structure and functioning of an age series plantations of teak (Tectona grandis Linn.) in Kumaun Himalayan Tarai. Ph.D. Thesis, Kumaun University, Nainital
15. Karekezi, S. and W. Kithyoma. (2006). Bioenergy and agriculture: Promises and challenges. Bioenergy and the poor. In: 2020 Vision for Food, Agriculture, and the Environment. International Food Policy Research Institute, Washington DC, USA https://doi.org/10.2499/Focus14CH11
16. Karmacharya, S.B. and Singh, K.P. (1992). Biomass and net production of teak plantations in a dry tropical region in India. Forest Ecology & Management. 55:233-247 https://doi.org/10.1016/0378-1127(92)90103-G
17. Keogh, R. (1996). Teak, 2000: A consortium support model for greatly increasing the contribution of quality tropical hardwood plantations to sustainable development IIED Forestry and Land Use Series No. 9, IIED and ATF
18. Kotto-Same, J., Woomer, P.L., Appolinaire, M. and Louis, Z. (1997). Carbon dynamics in slash-and-burn agricultural and land use alternatives of the humid forest zone in Cameroon. Agriculture Ecosystem Environment. 65:245-256 https://doi.org/10.1016/S0167-8809(97)00060-1
19. Krishnapillay, B. (2000). Silviculture and management of teak plantations. Unasylva No. 201. www.fao.org/docreplx4565e/x 4565e04.html
20. Lal, M. and Singh, R. (2000). Carbon sequestration potential of Indian forests. Environmental Monitoring Assessment. 60: 315-327 https://doi.org/10.1023/A:1006139418804
21. Lugo, A.E.(1988). Estimating reductions in the diversity of tropical forest species. In: Wilson, E.O., Peter, F.M. (Eds.), Biodiversity. National Academies Press, Washington, DC, pp.58-70
22. Lugo, A.E. and Figueroa, J. (1985). Performance of Anthocephaluschinensisin Puerto Rico. Canadian Journal of Forest Research. 15: 577-585 https://doi.org/10.1139/x85-094
23. Manhas, R.K., Negi, R. Kumar and P.S. Chauhan (2006). Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Climate Change. 74:191-221 https://doi.org/10.1007/s10584-005-9011-4
24. Marland, G, Schlamandinger, B. and Leiby, P. (1997). Forest biomass based mitigation strategies: does the timing of carbon reductions matter? Critical reviews in Environmental Science and Technology. 27:S213-S226 https://doi.org/10.1080/10643389709388521
25. Mbaekwe, E.I. & Mackenzie, J.A. (2008). The use of a best-fit allometric model to estimate aboveground biomass accumulation and distribution in age series of teak (Tectonagrandis L.f.) plantations at Gambari forest reserve, Oyo State, Nigeria. International Society for Tropical Ecology, 49(2): 259-270
26. Mishra R.(1968). Ecology work book. Oxford and IBM Publishing Co. Calcutta
27. Ola- Adams, B.A.(1993). Effects of spacing on biomass distribution and nutrient content of TectonagrandisLinn. F. (teak) and Terminalia superbaEngl. & Diels (afara) in south-western Nigeria. Forest Ecology and Management 58: 299-319 https://doi.org/10.1016/0378-1127(93)90152-D
28. Pande, P.K.(2005) Biomass and productivity in some disturbed tropical dry deciduous teak forest of Satpura plateau, Madhya Pradesh. Tropical Ecology. 46:229-239
29. Pearson, R.S. and Brown, H.P. (1932). Commercial timbers of India, Their distribution, Government of India,Central publication branch, Calcutta, 786-796
30. Ramacharitra, T. (2006). The effect of anthropogenic disturbances on the structure and composition of rainforest vegetation. Tropical Resources Bulletin 25:32-37
31. Richards, J.F. and Flint E.P. (1994). Historic land use and carbon estimates for South and Southeast Asia 1880-1980. ORNL/ CDIAC-61, NDP-046. Tennessee, USA:Oak Ridge National Laboratory; p.326 https://doi.org/10.3334/CDIAC/lue.ndp046
32. Sagar, R.; Raghubanshi, A.S. and Singh, J.S.(2003). Tree composition dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management 186: 61-71 https://doi.org/10.1016/S0378-1127(03)00235-4
33. Salunkhe, O.; Khare, P.K.; Sahu, T.R. and Singh, Sarnam. (2016). Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Tropical Ecology 57(2): 153-161
34. Saxena, A.K. and Singh J.S. (1982). A phytosociological analysis of woody plant species in forest communities of a part of Kumaun Himalaya. Vegetatio. 50:3-22 https://doi.org/10.1007/BF00120674
35. Saxena, A.K. and Singh J.S. (1984). Tree population structure of certain Himalayan forests and implications concerning the future composition. Vegetatio. 58: 61-69 https://doi.org/10.1007/BF00044928
36. Satheesan, T., Sivanathawerl, T., Sivachandran, S. and Phuspakumara, D.K.N.G.(2016, March). Distribution, growth and aboveground biomass of teak (TectonagrandisL.) plantation in Mullaitivu district of Sri Lanka. International Journal of Scientific and Research Publications,6(3), 72-76
37. Schlamadinger, B. and Marland G. (1996). The role of forest and bio-energy strategies in the global carbon cycle. Biomass Bioenergy. 10: 275-300 https://doi.org/10.1016/0961-9534(95)00113-1
38. Singh, A. K. and Gupta, B. N. (1993). Biomass production and nutrient distribution in some important tree species on Bhatta soil of Raipur (Madhya Pradesh) India. Annals of forestry. 1(1):47-53
39. Turner J, Cole DW (1973) A review of forest biomass accumulation. Coniferous Forest Biome Internal Report, No. 56
40. Vivekanand, Kumar, V. Singh, V.K. and Singh, B. P.( 2017). Weather parameter based crop planning in Tarai region of Uttarakhand. International Journal of Agricultural Engineering. 10(2): 1-9 https://doi.org/10.15740/HAS/IJAE/10.2/360-366
41. Walkley, A. and Black, I.A.(1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38 https://doi.org/10.1097/00010694-193401000-00003