1. Asaah, V.A., Abimbola, A.F. and Suh, C.E. (2005). Heavy metal concentrations and distribution in surface soils of the Bassa industrial zone 1, Aouala, Cameroon. The Arab Jour for Sci and Eng, 31(2A): 147-158.
2. Arnon, D.T. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24: 1-15. https://doi.org/10.1104/pp.24.1.1
3. Bradford, M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem, 44: 276–287.
4. Do?anlar, Z. and Atmaca, M. (2011) Influence of airborne pollution on Cd, Zn, Pb, Cu, and Al accumulation and physiological parameters of plant leaves in Antakya (Turkey). Water Air Soil Poll, 214(1/4): 509–523. https://doi.org/10.1007/s11270-010-0442-9
5. Doganlar, Z.B., Seher, C. and Telat, Y. (2012). Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. Int J Biol., 4(3): 148-157. https://doi.org/10.5539/ijb.v4n3p148
6. Etim, E.U. and Onianwa, P.C. (2012). Heavy Metal Pollution of Topsoil in the Vicinity of an Industrial Estate Co-Located with a Housing Estate in Southwestern Nigeria. Jour of Environ Protec, 4: 91-98. https://doi.org/10.4236/jep.2013.41010
7. Ferguson, J.E. (1990). The Heavy Elements: Chemistry, Environmental Impacts and Health Effects. Pergamon Press, Oxford.
8. Gardea, T.J.L., de la Rosa, G. and Peralta, V.J.R. (2004). Use of phytofiltration technologies in the removal of heavy metals: a review. Pure Appl Chem. 76:801–813. https://doi.org/10.1351/pac200476040801
9. Han, Y. S. (1999). Advances of the function of Beta-carotene and carotenoid. J. China Agric. Univ. 4: 5–9.
10. Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E.Y. and Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ. Sci. and Pollu. Res, 20(9): 6150-6159. https://doi.org/10.1007/s11356-013-1668-z
11. Jayasri, M.A. and Suthindhiran, K. (2015). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl. Water Sci. pp 1-11.
12. Kanoun, B.M., Vicente Joaquim, A.F., Cristina, N., Prasad, M.N.V. and Helena, F. (2009). Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol, 91:1–9. https://doi.org/10.1016/j.aquatox.2008.09.009
13. Ogunkunle, C.O. and Fatoba, P.O. (2013). Pollution load and the ecological risk assessment of soil heavy metals around a mea cement factory in southwest Nigeria. Poli. Journal of Environ. Stud. 22(2): 487-493.
14. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M. and Strzalka, K. (2001). Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci. 161: 881–889. https://doi.org/10.1016/S0168-9452(01)00478-2
15. Puertas, R.M.C., Rodriguez, S.M. and Corpas, F.J. (2004). Cadmium-induced subcellular accumulation of oxygen and hydrogen peroxide in pea leaves. Plant Cell Environ. 27: 1122–1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x
16. Sandalio, L.M., Dalurzo, H.C. and Gomez, M. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115–2126. https://doi.org/10.1093/jexbot/52.364.2115
17. Sayad, M.R.G. and Sayadi, M.H. (2011). Variations in the heavy metal accumulations within the surface soils from the Chitgar industrial area of Tehran. Proc. International Academy of Ecology and Environmental Sciences, 1(1): 36-46.
18. Shakibaie, M.R., Khosravan, A., Farmhand, A. and Zare, S. (2008). Application of metal resistant bacteria by mutational enhancement technique for bioremediation of copper and zinc from industrial wastes. Iran J. Environ. Health Sci. Eng, 5: 251–256.
19. Singh, P.K. and Tewari, R.K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. Plants. J. Environ. Biol. 24: 107–112.
20. Slavik, R., Julinova, M. and Labudikova, M. (2012). Screening of the spatial distribution of risk metals in topsoil from an industrial complex. Ecological Chemistry and Eng. 19(2): 259-272. https://doi.org/10.2478/v10216-011-0020-0
21. Srivastava, S. and Thakur, I.S. (2006). Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresource Technol. 97: 1167–1173 https://doi.org/10.1016/j.biortech.2005.05.012
22. Suciu, I., Constanti, C., Todica, M., Bolboaca, S.D. and Jantschi, L. (2008). Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania. Int. J. Mol. Sci. 9: 434-453. https://doi.org/10.3390/ijms9040434
23. Tariq, S.R., Iqbal, F. and Ijaz, A. (2013). Assessment and Multivariate Analysis of Metals in Surgical Instrument Industry Affected Top Soils and Groundwater for Future Reclamation. Inter Jour of Environ Pollu and Sol, 1: 54-71. https://doi.org/10.7726/ijeps.2013.1006
24. Teisseire, H. and Vernet, G. (2000). Copper-induced changes in antioxidant enzymes in fronds of duckweed (Lemna minor). Plant Sci. 153: 65–72. https://doi.org/10.1016/S0168-9452(99)00257-5
25. Vinodhini, R. and Narayan, M. (2009). The impact of toxic heavy metals on the hematological parameters in common carp (Cyprinus carpio L.). Iran J Environ Health Sci. Eng. 6: 23–28.
26. Wang, Y.P., Shi, J., Wang, H., Lin, Q., Chen, X. and Chen, Y. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox and Environ Safe, 67: 75–81. https://doi.org/10.1016/j.ecoenv.2006.03.007
27. Wenhua, H., Xiao, C., Guanling, S., Qunhui, W. and Chein, C.C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem. 45: 62–69. https://doi.org/10.1016/j.plaphy.2006.12.005