Research Article | Published: 01 December 2016

Aerosols Characterization during the Holi festival in Dehradun: Foothills of the Himalayas, India

S.  Vignesh  Prabhu, Ashish  Soni, Pooja Panwar and Vijay Shridhar

Indian Journal of Forestry | Volume: 39 | Issue: 4 | Page No. 335-343 | 2016
DOI: https://doi.org/10.54207/bsmps1000-2016-WQNC9M | Cite this article

Abstract

In this study, Partisol 2300 speciation sampler and ICP-OES were used for determining the mass and elemental composition of fine particulate matter (PM2.5) during Holi festival week 13th March 2014 to 20th March 2014 at Dehradun, India. Chemical analysis for 15 elements (Fe, Ni, Cr, Mn, Cu, Zn, Cd, As, Pb, Na, K, Al, Mg, Sb and Ca) were carried out with the collected samples (n=8). The order of concentration of chemical species during holi festival days were K>Fe>Na>Mn>Mg>Cr>Zn>Ca>Al>Cu>As>Pb>Ni>Sb>Cd. Aethalometer was used for determining the Black Carbon (BC) concentration and percentage of black carbon contributed by the biomass burning (BB). The average mass concentration of PM2.5 and BC during holi festival week (pre-Holi (3 days), holi(holi festival days) (2 days) and post-holi (3 days)) period was found to be 41.58, 68.61, 42.96 µg/m3 and 4.97 ± 1.89, 7.61 ± 2.37, 3.20 ± 2.46 µg/m3 respectively. The percentage of BC contributed by BB during pre-Holi, Holi and post-Holi period was 15.05 %, 18.20 % and 17.24 %. On analyzing the concentration of PM2.5, BC, surface ozone (O3), oxides of nitrogen (NOx) during the sampling period, substantial increase in concentration was observed during Holi from pre-Holi period.

 

Keywords

Holi Festival, Fine particulate Matter (PM 2.5) Biomass Burning, Black Carbon, Oxides of Nitrogen, Aerosols Status, Dehradun, Himalayas Foothills

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Agrawal, A., Upadhyay, V. K. and  Sachdeva, K. (2011). Study of aerosol behavior on the basis of morphological characteristics during festival events in India. Atmospheric Envionment. 45,: 3640–3644 https://doi.org/10.1016/j.atmosenv.2011.04.006

Google Scholar

2. Ali, K., Momin, G.A., Safai, P.D., Chate, D.M. and Rao, P.S.P. (2004). Surface ozone measurements over Himalayan region and Delhi, North India. Indian Journal of Radio Space. 33: 391–398.

Google Scholar

3. Attri, A.K., Kumar, U. and Jain, V.K. (2001). Formation of ozone by fireworks. Nature. 411: 6841. https://doi.org/10.1038/35082634

Google Scholar

4. Badarinath, K.V.S., Latha, K.M., Chand, T.R.K., Reddy, R.R., Gopal, K.R., Sankara, L.S., Narasimhulu, K. and Kumar, K.R. (2007). Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmospheric Research. 85 : 209–216 . https://doi.org/10.1016/j.atmosres.2006.12.007

Google Scholar

5. Barman, S.C., Singh, R., Negi, M.P.S. and Bhargava, S.K. (2008).Fine particles (PM2.5). in residential areas of Lucknow city and factors influencing the concentration. CLEAN - Soil, Air, Water. 36: 111–117. https://doi.org/10.1002/clen.200700047

Google Scholar

6. Baxla, S.P., Roy, A.A., Gupta, T. Tripathi, S.N. and Bandyopadhyaya, R. (2009). Analysis of diurnal and seasonal variation of submicron outdoor aerosol mass and size distribution in a northern indian city and its correlation to black carbon. Aerosol and Air Quality Research. 9: 458–469. https://doi.org/10.4209/aaqr.2009.03.0017

Google Scholar

7. Cao, J.J., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K., Watson, J.G., Zhu, C.S. and Liu, S.X. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics Discussions. 5: 3561–3593. https://doi.org/10.5194/acp-5-3127-2005

Google Scholar

8. Cao, J.J., Zhu, C.S., Chow, J.C., Watson, J.G., Han, Y.M., Wang, G.H., Shen, Z.X. and An, Z.S. (2009). Black carbon relationships with emissions and meteorology in Xi’an, China. Atmospheric Research. 94: 194–202. https://doi.org/10.1016/j.atmosres.2009.05.009

9. Chatterjee, A., Sarkar, C., Adak, A., Mukherjee, U., Ghosh, S. K. and Raha, S.(2013). Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India. Aerosol and Air Quality Research. 13: (3)1133–1144. https://doi.org/10.4209/aaqr.2012.03.0062

Google Scholar

10. CPCB (2009). Government of India Notification- National Ambient Air Quality Standard (NAAQS), Central Polution Control Board New Delhi

11. Cristofanelli, P., Fierli, F., Marinoni,  A., Calzolari, F., Duchi, R., Burkhart, J., Stohl,  A., Maione, M., Arduini, J. and Bonasoni, P. (2013). Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.). Atmospheric Chemistry and Physics. 13: 15–30. https://doi.org/10.5194/acp-13-15-2013

Google Scholar

12. Crutzen, P. J. and Giedel, L.T. (1983). A two-dimensional photochemical model of the atmosphere. 2: The tropospheric budgets of anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone. J. Geophys. Res. 88: 6641–6661. https://doi.org/10.1029/JC088iC11p06641

Google Scholar

13. Fendel, W., Matter, D., Burtscher, H. and Schmidt-Ott, A. (1995).Interactiong between carbon or iron Aerosol particles and ozone. Atmospheric Environment. 29: 967–973. https://doi.org/10.1016/1352-2310(95)00038-Z

Google Scholar

14. Galanter, M., II, H.L. and Carmichael, G.R. (2000). Impacts of biomass burning on tropospheric CO, NOx, and O3. Journal of Geophysical Research. 105: 6633–6653. https://doi.org/10.1029/1999JD901113

Google Scholar

15. Guicherit, R. and Roemer, M. (2000). Tropospheric ozone trends. Chemosphere - Global Change Science. 2: 167–183. https://doi.org/10.1016/S1465-9972(00)00008-8

Google Scholar

16. Herich, H., Gianini, M.F.D., Piot,C., Mo?nik, G., Jaffrezo, J.L., Besombes, J.L., PrévÔt, A. S. H. and Hueglin, C. (2014): Overview of the impact of wood burning emissions on carbonaceous aerosols and PM in large parts of the Alpine region. Atmospheric Environment. 89: 64–75. https://doi.org/10.1016/j.atmosenv.2014.02.008

Google Scholar

17. Im, U., Poupkou, A., Incecik, S., Markakis, K., Kindap, T., Unal, A., Melas, D., Yenigun, O., Topcu, S., Odman, M.T., Tayanc, M. and Guler, M. (2011). The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul. Science of the Total Environment. 409: 1255–1265. https://doi.org/10.1016/j.scitotenv.2010.12.026

Google Scholar

18. Itahashi, S., Uno, I. and  Kim, S. (2013). Seasonal source contributions of tropospheric ozone over East Asia based on CMAQ–HDDM. Atmospheric Environment. 70: 204–217. https://doi.org/10.1016/j.atmosenv.2013.01.026

Google Scholar

19. Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S. and Kulshrestha, M.J. (2004). Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment. 38: 4421–4425. https://doi.org/10.1016/j.atmosenv.2004.05.044

Google Scholar

20. Lee, B.K. and Hieu, N.T. (2011). Seasonal Variation and Sources of Heavy Metals in Atmospheric Aerosols in a esidential Area of Ulsan, Korea. Aerosol and Air Quality Research. 11: 679–688. https://doi.org/10.4209/aaqr.2010.10.0089

Google Scholar

21. Lee, Y.C., Lam, Y.F., Kuhlmann, G., Wenig, M.O., Chan, K.L., Hartl,  A. and Ning, Z. (2013). An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment. 80: 478–487. https://doi.org/10.1016/j.atmosenv.2013.08.030

Google Scholar

22. Lu, S., Liu, D., Zhang, W., Liu, P., Fei, Y., Gu, Y., Wu, M., Yu, S., Yonemochi, S., Wang, X. and Wang, Q. (2015). Physico-chemical characterization of PM2.5 in the microenvironment of Shanghai subway. Atmospheric Research. 153: 543–552. https://doi.org/10.1016/j.atmosres.2014.10.006

Google Scholar

23. Piazzalunga, A., Belis, C., Bernardoni, V., Cazzuli, O., Fermo, P., Valli, G. and Vecchi, R. (2011). Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors. Atmospheric Environment. 45: 6642–6649. https://doi.org/10.1016/j.atmosenv.2011.09.008

Google Scholar

24. Pope, C.A. and Dockery, D.W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association. 56: 709–742. https://doi.org/10.1080/10473289.2006.10464485

Google Scholar

25. Putero, D., Landi, T.C., Cristofanelli, P., Marinoni,  A., Laj, P., Duchi, R., Calzolari, F., Verza, G.P. and Bonasoni, P. (2014).  Influence of open vegetation fires on black carbon and ozone variability in the southern Himalayas (NCO-P, 5079 m a.s.l.). Environmental Pollution. 184: 597–604. https://doi.org/10.1016/j.envpol.2013.09.035

Google Scholar

26. Ramachandran, S. and Rajesh, T. A. (2007). Black carbon aerosol mass concentrations over Ahmedabab, an urban location in western India: Comparison with urban sites in Asia, Europe, Canada, and the United States. Journal of Geophysical Research: Atmospheres. 112: 1–19. https://doi.org/10.1029/2006JD007488

Google Scholar

27. Ramanathan, V., Crutzen, P.J., Kiehl, J.T. and Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science.  294: 2119–2124. https://doi.org/10.1126/science.1064034

Google Scholar

28. Rana, S., Kant, Y. and Dadhwal, V.K. (2009). Diurnal and Seasonal Variation of Spectral Properties of Aerosols over. 9: (1), 32–49 https://doi.org/10.4209/aaqr.2008.06.0019

Google Scholar

29. Rehman, I.H., Ahmed, T., Praveen, P.S., Kar,  A. and Ramanathan, V. (2011). Black carbon emissions from biomass and fossil fuels in rural India. Atmospheric Chemistry and Physics. 11: 7289–7299 https://doi.org/10.5194/acp-11-7289-2011

Google Scholar

30. Ruellan, S. and Cachier, H. (2001). Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmospheric Environment. 35: 452–468. https://doi.org/10.1016/S1352-2310(00)00110-2

Google Scholar

31. Salameh, D., Detournay, A., Pey, J., Pérez, N., Liguori, F., Saraga, D., Bove, M.C., Brotto, P., Cassola, F., Massabò, D., Latella, A., Pillon, S., Formenton, G., Patti, S., Armengaud, A., Piga, D., Jaffrezo, J.L., Bartzis, J., Tolis, E., Prati, P., Querol, X., Wortham, H. and Marchand, N. (2015). PM2.5 chemical composition in five European Mediterranean cities: A 1-year study. Atmospheric Research. 155: 102–117. https://doi.org/10.1016/j.atmosres.2014.12.001

Google Scholar

32. Sarkar, S., Khillare, P.S., Jyethi, D.S., Hasan, A. and  Parween, M. (2010 a).  Chemical speciation of respirable suspended particulate matter during a major firework festival in India. Journal of Hazardous Materials. 184: 321–330.   https://doi.org/10.1016/j.jhazmat.2010.08.039

33. Sharma, S., Brook, J.R., Cachier, H., Chow, J., Gaudenzi,  A.and Lu, G. (2002). Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research: Atmospheres. 107: 1–11.   https://doi.org/10.1029/2002JD002496

34. Silva, P.J., Prather, K., Noble, C.A. and Prather, K.A. (1999). Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species. Environ . Sci. Technol, 33: (18) : 3068-3076 https://doi.org/10.1021/es980544p

Google Scholar

35. Simha, C.P., Devara, P.C.S. and  Saha, S.K. (2013). Aerosol pollution and its impact on regional climate during Holi festival inferred from ground-based and satellite remote sensing observations. Natural Hazards. 69: 889–903. https://doi.org/10.1007/s11069-013-0743-6

Google Scholar

36. Tiwari, S., Srivastava, A.K., Bisht, D.S., Parmita, P., Srivastava, M.K. and Attri, S.D. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research. 125-126: 50–62. https://doi.org/10.1016/j.atmosres.2013.01.011 https://doi.org/10.1016/j.atmosres.2013.01.011

Google Scholar

37. Tong, D.Q., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T., Pickering, K.E. and Stajner, I. (2015). Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmospheric Environment. 107: 70–84. https://doi.org/10.1016/j.atmosenv.2015.01.035

Google Scholar

38. Vecchi, R. and Bernardoni, V., Cricchio, D., D’Alessandro, A., Fermo, P., Lucarelli, F., Nava, S., Piazzalunga, A., and Valli, G. (2008). The impact of fireworks on airborne particles. Atmospheric Environment. 42: 1121–1132. https://doi.org/10.1016/j.atmosenv.2007.10.047

Google Scholar

39. Velpandian, T., Saha, K., Ravi,  A. K., Kumari, S.S., Biswas, N.R.and Ghose, S. (2007). Ocular hazards of the colors used during the festival-of-colors (Holi) in India-Malachite green toxicity. Journal of Hazardous Materials. 139: 204–208. https://doi.org/10.1016/j.jhazmat.2006.06.046

Google Scholar

40. Venkatachari, P., Zhou, L., Hopke, P.K., Felton, D., Rattigan, O. V., Schwab, J.J. and Demerjian, K.L (2006). Spatial and temporal variability of black carbon in New York City. Journal of Geophysical Research. 111: 1–9. https://doi.org/10.1029/2005JD006314

Google Scholar

41. Viidanoja, J., Sillanpää, M., Laakia, J., Kerminen, V.M., Hillamo, R., Aarnio, P. and Koskentalo, T. (2002). Organic and black carbon in PM2.5 and PM10: 1 Year of data from an urban site in Helsinki, Finland. Atmospheric Environment. 36: 3183–3193. https://doi.org/10.1016/S1352-2310(02)00205-4

Google Scholar

42. Westerdahl, D., Wang, X., Pan, X.and Zhang, K.M. (2009). Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmospheric Environment. 43: 697–705. https://doi.org/10.1016/j.atmosenv.2008.09.042

Google Scholar

43. Wu, D., Wu, C., Liao, B., Chen, H., Wu, M., Li, F., Tan, H., Deng, T., Li, H., Jiang, D. and Yu, J.Z. (2013). Black carbon over the South China Sea and in various continental locations in South China. Atmospheric Chemistry and Physics. 13: 12257–12270. https://doi.org/10.5194/acp-13-12257-2013

Google Scholar

44. Yang, L., Cheng, S., Wang, X., Nie, W., Xu, P., Gao, X., Yuan, C. and Wang, W. (2013). Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmospheric Environment. 75: 265–269. https://doi.org/10.1016/j.atmosenv.2013.04.058

Google Scholar

About this article

How to cite

Prabhu, S.V., Soni, A., Panwar, P. and Shridhar, V., 2016. Aerosols Characterization during the Holi festival in Dehradun: Foothills of the Himalayas, India. Indian Journal of Forestry, 39(4), pp.335-343. https://doi.org/10.54207/bsmps1000-2016-WQNC9M

Publication History

Manuscript Published on 01 December 2016

Share this article

Anyone you share the following link with will be able to read this content: