1. Barghchi, M. (1988). Micropropagation of Alnus cordata (Loisel.) Loisel. Plant Cell Tissue and organ Culture, 15(3): 233-244. https://doi.org/10.1007/BF00033647
2. Dar, G.H. and Naqshi, A.R. (2001). Threatened flowering plants of the Kashmir Himalaya-A Checklist. Oriental Sci. 23-53.
3. Enrico, R.J., Ramirez, S.S., Mroginski, L.A. and Wall, L.G. (2005). In vitro plant regeneration of Alnus acuminata HBK. ssp. Acuminata and its root nodulation by Frankia. Plant Cell Tissue and Organ Culture, 80: 343-346. https://doi.org/10.1007/s11240-004-0911-1
4. Gamborg, O.L., Miller, R.A. and Ojima, K. (1968). Nutrient requirements of suspension cultures of Soybean root cells. Exp. Cell Res. 50: 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
5. Garton, S., Hosier, M.A., Read, P.E. and Farnham, R.S. (1981). In vitro propagation of Alnus glutinosa Gaertn. Hort Sci., 16(6): 758-759.
6. Hahn, D., Starrenburg, M. and Akkermans, A.D.L. (1989). Micropropagation and selection of Alnus glutinosa ecotype clones. Grassi G(ED); Pirrwitz D(Ed); Zibetta H(Ed). In Energy from biomass 4. Proc. of the third contractors: meeting, Paestum (25-27 May 1988).
7. Kaur, R., Sharma, D.R. and Srivastava, D.K. (1993). Micropropagation of Alnus nepalensis. Ind. J. For., 16: 2,162-164
8. Lloyd, G. and McCown, B.H. (1981). Commercially feasible Micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc. Int. Plant Propag. Soc., 30: 421-427.
9. Manisha, T., Sharma D.R., Kamlesh, K., Thakur, M. and Kanwark, K. (2001). Mass propagation of Alnus nepalensis D. Don. Phytomorphology, 51(2): 123-127.
10. Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
11. Peeters, A.J.M., Gerads, W., Barendse, G.S.M. and Wullems, G.J. (1991). In vitro flower bud formation in tobacco: interaction of hormones. Plant Physiol., 97: 402-408. https://doi.org/10.1104/pp.97.1.402
12. Perinet, P. and Lalonde, M. (1983). In vitro propagation and nodulation of the actinorhizal host plant Alnus glutinosa (L) Gaertn. Pl Sci Letters, 29:1, 9-17 https://doi.org/10.1016/0304-4211(83)90018-4
13. Perinet, P. and Tremblay, F.M. (1987). Commercial Micropropagation of five Alnus species. New For., 1:3, 225-230. https://doi.org/10.1007/BF00118760
14. Read, P.E., Garton, S., Louis, K.A. and Zimmerman, E.S. (1982). In vitro propagation of species for bioenergy plantations. In: Fujiwara, A. (Ed) Plant Tissue Culture. Maruzen, Tokyo.
15. Tang, D., Ishii, K. and Ohba, K. (1996). In vitro regeneration of Alnus cremastogyne Burk from epicotyl explants. Plant Cell Rep., 15: 658-661. https://doi.org/10.1007/BF00231919
16. Tarrant, R.F. (1983). Nitrogen fixation in North American forestry: research and application. In; Gordon J.C., Wheeler C.T (Eds) Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Application. Nijhoff, The Hague. https://doi.org/10.1007/978-94-009-6878-3_9
17. Tremblay, F.M. and Lalonde, M. (1984). Requirements for in vitro propagation of seven nitrogen fixing Alnus species. Plant Cell Tissue and Organ Culture, 3: 189-199. https://doi.org/10.1007/BF00040337
18. Tremblay, F.M., Nesme, X. and Lalonde, M. (1984). Selection and micropropagation of nodulating and non-nodulating clones of Alnus crispa (Ait.) Pursh. Plant and Soil, 78: 171-179. https://doi.org/10.1007/978-94-009-6158-6_15
19. Tremblay, F.M., Perinet, P. and Lalonde, M. (1986). Tissue culture of Alnus spp. with regard to symbiosis. In: Biotechnology in Agriculture and forestry 1. Trees 1. (Ed. Y.P.S Bajaj) Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-70576-2_6
20. Turvey, N.D. and Smethurst, P.J. (1983). Nitrogen-fixing plants in forest management In: Gordon J.C., Wheeler C.T. (Eds) Biological Nitrogen Fixation in Forest Ecosystems: Foundations and Application. Nijhoff, The Hague. https://doi.org/10.1007/978-94-009-6878-3_8
21. Welander, M., Welander, N.T. and Brackman, A.S. (1989). Regulation of in vitro shoot multiplication in Syringa, Alnus and Malus by different carbon sources. Jour. of Horti. Sci., 64: 3,361-366. https://doi.org/10.1080/14620316.1989.11515965