Research Article | Published: 01 September 2009

Marchantia paleacea Bert.  as an indicator of heavy metal pollution

Afroz Alam and S. C. Srivastava

Indian Journal of Forestry | Volume: 32 | Issue: 3 | Page No. 465-470 | 2009
DOI: https://doi.org/10.54207/bsmps1000-2009-UVVIS9 | Cite this article

Abstract

Presence of S, P, Fe, Ca, Co, Cr and Cu has been estimated in vegetative thalli (plant tissue) of Marchantia paleacea Bert. and the soil on which it grows indicating there by that this liverwort serves as a good accumulator of mineral elements present in the soil and may act an indicator of both aerial pollution and mineral enrichment in soil.

Keywords

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Barkman, J.J. (1969). The influence of air pollution on bryophytes and lichens. In Air pollution; Proc. of the first European Congress on the influence Air Pollution on plants and Animals., Wagening, p 197-209.

Google Scholar

2. Brooks, R.R. (1972). Bryophytes as a guide to mineralization. New Zeal. J. Bot., 9: 674-678.  https://doi.org/10.1080/0028825X.1971.10430229

Google Scholar

3. Brooks, R.R., Yates, T. E. and Ogden, J. (1973).  Copper in bryophytes from copper mine island, Hen and chicken group New Zealand, N. Z. J. Bot., 11: 443-448.  https://doi.org/10.1080/0028825X.1973.10430294

Google Scholar

4. Brown, D.H. and Bates, J.W. (1972). Uptake of lead by two populations of Grimmia doniana. J. Bryol. 7: 187-193.  https://doi.org/10.1179/jbr.1972.7.2.187

Google Scholar

5. Brown, D.H. (1982). Mineral Nutrition in A.J.E. Smith (ed.) Bryophytes Ecology. Chapman & Hall, London, p. 383-444.  https://doi.org/10.1007/978-94-009-5891-3_11

Google Scholar

6. Brown, D.H. (1984).  Uptake of mineral elements and their use in pollution monitoring: in AJ.E. Dyer & J.G. Duckett (ed.) The experimental biology of bryophytes., Academic press N.Y., p 229-255.

Google Scholar

7. Brüning, F. and Kreeb, K.H. (1993).  Mosses as Biomonitors of heavy metal contamination within urban ares; In B. Markert (ed.) Plants as Biomonitors: Indicators for Heavy metals in Terrestrial Environment. VCH., Weinheim and New York.

Google Scholar

8. Canon, H.L. (1960). Botanical prospecting for ore deposits. Science, 132: 592-598.  https://doi.org/10.1126/science.132.3427.591

9. Chapin, F.S. III, Mckendrick, J.D. and Johnson, D.A. (1986). Seasonal changes in carbon fractions in Alaska tundra plants of differing growth form: Implications for herbivory. J. Ecol., 74: 707-713.  https://doi.org/10.2307/2260393

Google Scholar

10. Chapman, H.D. (1965). Diagnostic Criteria for plants and soils, Eurasia Publishing House (P) Ltd. Ram Nagar, New Delhi-1.

Google Scholar

11. Chapman, H.D. (1966). Diagnostic criteria for plant and soils.  Univ. California Div. Agric. Sci. Berkley.

12. Chesnin, L. and Yein, C.H. (1951). Turbid metric determination of available sulphate. Proc. Soil Sci. Amer., 15:  149-151.  https://doi.org/10.2136/sssaj1951.036159950015000C0032x

13. Chopra, R.N. and Kumra, P.K. (1991). Biology of bryophytes., Wiley Eastern Ltd. New Delhi.

14. Crundwell, A.C. (1976). Ditrichum plumbicola a new species from lead mine waste; J. Bryol., 9: 167-169.  https://doi.org/10.1179/jbr.1976.9.2.167

Google Scholar

15. Goodman, G.T., Smith, S., Parry, G.D.R and Inskip, M.J. (1974). The use of moss bags as deposition gauges for airborne metals, pp. 1-16. Proc. 41st Conf. Nat. Soc. Clean air, Brighton, U.K.

Google Scholar

16. Hutchinson, T.C. and Whitby, L.M. (1974).  Heavy metal pollution in the Sudbury mining and smelting region of Canada. I. Soil and vegetation contamination by Nickel, copper, and other metals Env. Conserv., 1 (2): 123-132.  https://doi.org/10.1017/S0376892900004240

Google Scholar

17. James, P.W. (1973). The effect of air pollutants other than hydrogen fluoride and sulphur di oxide on lichens. In B.W. Ferry, M.S. Baddeley & D.L. Hawksworth (ed.), Air Pollution and Lichen., University of Toronto Press, p.143-175.

Google Scholar

18. Kilmer, V.J. and Alexander, L.T. (1949). Methods of making mechanical analysis of soils, Soil Sci., 68: 15-24.  https://doi.org/10.1097/00010694-194907000-00003

Google Scholar

19. Kurschner, H. (2004). Life strategies and Adaptation in Bryophytes from the near and Middle East. In: Turk. J. Bot. 28: 73-84.

Google Scholar

20. LeBlanc, F. and Rao, D.N. (1974). A review of the literature on bryophytes with respect to air pollution, Bull. Soc. Bot. Fr. Coll. Bryologie, 121: 237-255.  https://doi.org/10.1080/00378941.1974.10839310

Google Scholar

21. LeBlanc, F., Robitaille, G. and Rao, D.N. (1974). Biological responses of Lichens and Bryophytes to environmental pollution in the Murdochville Copper mine area, Quebec. Jour. Hattori Bot. Lab., 38: 405-433.

Google Scholar

22. Lindsay, W.L. and Norvell, W.A. (1978). Development of DTPA soil testing for Zinc, Iron, Maganese and Copper, Soil Sci. Soc. Am. J., 42: 421-428.  https://doi.org/10.2136/sssaj1978.03615995004200030009x

Google Scholar

23. Lounamaa, K. J. (1956). Elements in plants growing wild on different rocks in Finland. A quantitative spectrographic survey. Ann. Bot. Sco. Zool. Fenn. Vanamo., 29: 1-8.

Google Scholar

24. Martensson, D. and Berggren, A. (1951). Some notes on the ecology of copper mosses. Oikos., 5: 99-100.  https://doi.org/10.2307/3564654

Google Scholar

25. Naguchi, A. and Furato, H. (1956). Germination of spores and regeneration of leaves of Merceya ligulata and M. gedeana; J. Hattori Bot. Lab., 17: 32-44.

Google Scholar

26. Naguchi, A. (1956). On some species of Merceya, with special reference to variation and ecology; Kumamoto, J. Sci. Ser. B, Sect., 2(2):  239-257.

27. Nash, T.H. and Wirth, V. (1988). Lichens, Bryophytes and Air quality; Bibliotheca Lichenologica., Band 30: 1-207.

Google Scholar

28. Nicholos (Wallace, D.J.D), (1951). Plant Physiology Treatise (Ed. F.C. Steward) Academic Press. New York., 3: 363.

29. Olsen, S.R.; Cole, C.V; Watanbe, F.S. and Dean, L.A. (1954). Estimation of available phosphorus in soil by extraction with sodium bi carbonate, U.S.D.A. p. 939

Google Scholar

30. Pant, G.  and Tewari, S.D. (1984). Bryophytes associated with mineral enrichment in Kumaon Himalaya In: D.D. Nautiyal (ed.) Developmental and comparative aspects of plants structure and function., University of Allahabad, Allahabad, p. 129 -143.

Google Scholar

31. Pant, G. and Tewari, S.D. (1995). A survey of bryofloristics patterns on various metals contaminated substrates in Kumaon Himalaya-III In: S.S. Kumar (ed.) Recent studies on bryophytes., Bishen Singh Mahendra Pal Singh Dehra Dun (India), 165 -187.

Google Scholar

32. Pant, G. and Tewari, S.D. (1998). Bryophytes as Biogeoindicators: Bryophytic Associations of Mineral- enriched substrates in Kumaon Himalaya In: Topics In Bryology, R.N. Chopra (ed.) Allied Publish. Ltd.

Google Scholar

33. Pearson, H. (1948). On the discovery of Merceya ligulata in the Azores with a dissarian of the so called copper mosses; Revue bryol. Lichenol., 17, 75-78.

Google Scholar

34. Persson, H. (1956). Studies in copper mosses; J. Hattori Bot. Lab., 17: 1-18.

Google Scholar

35. Piper, C.S. (1942). Soils and plant analysis, Waite Agric. Res. Inst. The Univ. of Adelaide Australia., p. 251-257.

Google Scholar

36. Rao, D.N., Robitaille, G.  and LeBlanc, F. (1977). Influence of Heavy metal pollution on Lichen & Bryophyta. J. Hattori Bot. Lab., 42: 213-239.

Google Scholar

37. Rejment, G.I. (1976).  Concentration of heavy metals, lead, Iron, manganese, zinc and copper in mosses. J. Hattori Bot. Lab., 41: 225-230.

38. Richards, L.A. (1949). Filter nunnel’s from soil extracts. Agron. Jour., 41  https://doi.org/10.2134/agronj1949.00021962004100090011x

39. Richards, P.W. (1932). Ecology In: Manual of Bryology (Verdoorn, F. ed.)., p 367-395.

40. Ruhling, A. and Tyler, G. (1969).  Ecology of Heavy metals- a regional and historical study. Bot. Notliser., 122: 248-259

Google Scholar

41. Satake, K. A. (1951). Copper moss Scopelophila cataractai and copper (20- Accumulation of copper; Proc. Bryol. Soc. Japan., 5: 105-107.

42. Schatz, A. (1955). Speculation on the ecology and photosynthetic of the copper mosses, Bryologist, 58: 113-120.  https://doi.org/10.1639/0007-2745(1955)58[113:SOTEAP]2.0.CO;2

Google Scholar

43. Schofield, W.B. (1959). Mielichhoferia mielichhoferi in southern Applachians. Bryologist., 62: 248-250.  https://doi.org/10.1639/0007-2745(1959)62[248:MMITSA]2.0.CO;2

Google Scholar

44. Shacklette, H.T. and Erdman J.A. (1982). Uranium in spring water and bryophytes at Basin Greek in Central Idaho.  Jour. Geochem. Expl., 17: 89-93.  https://doi.org/10.1016/0375-6742(82)90004-8

Google Scholar

45. Shacklette, H.T. (1961). Substrate relationship of some bryophytes communities of Latouche Island, Alaska. Bryologist, 64: 1-16.  https://doi.org/10.1639/0007-2745(1961)64[1:SROSBC]2.0.CO;2

Google Scholar

46. Shacklette, H.T. (1965). Bryophytes associated with mineral deposits & solutions in Alaska. U.S. Geol. Survey Bull., 1198D: 1-21.

47. Shacklette, H.T. (1967). Copper mosses as indicators of metal concentration. U.S. Geol. Survey Bull., 1198G: 1-18.

Google Scholar

48. Shacklette, H.T. (1984). The use of aquatic bryophytes in prospecting; Jour. Geochem. Expl., 21: 89-93.  https://doi.org/10.1016/0375-6742(84)90036-0

Google Scholar

49. Shaw, J. and Schneider, R. E. (1995). Genetic biogeo. Fig.y of the rare copper moss Mielichhoferia Clongata (Bryaceae)., Am. J. Bot., 82: 8-17.   https://doi.org/10.1002/j.1537-2197.1995.tb15642.x

Google Scholar

50. Shaw, J. (1990). Metal tolerance and cotolerance in Moss F. hygrometrica Hedw. Evolution., 45: 1260-1274.  https://doi.org/10.1111/j.1558-5646.1991.tb04391.x

51. Shaw, J., Niquidula, N.G. and Wilson, T.M. (1992). Reproductive biology of the rare copper moss Mielichhoferia mielichhoferi; Contr. Univ. Mich. Herb., 18: 131-140.

Google Scholar

52. Smith, S.C. (1986). Base metal and mercury in bryophytes & stream sediments from a geochemical reconnaissance survey of Chadulur Quadrangle, Alaska. J. Geoch. Expl., 25: 345-365.  https://doi.org/10.1016/0375-6742(86)90083-X

Google Scholar

53. Tamm, C.O. (1953). Growth, yield & nutrition in carpets of carpets (Hylocomium splendus). Medd. Fran. Statens. Skogforskning institute., 43 (1): 140.

54. Tuominen, Y. and Jaakkola, T. (1973). Absorption & accumulation of mineral elements & radioactive nuclides. In V. Ahmadijian & M.E. Hale (ed.), The Lichen., Academic Press, N.Y., p. 185-223  https://doi.org/10.1016/B978-0-12-044950-7.50011-8

55. Ward, N.I., Brooks, R.R. and Reeves, R.D. (1976). Copper, cadmium, lead & zinc in soils, streams, sediments, water and natural vegetation around the Tui mine, Te Aroha, New Zealand. N.Z. Jour. Sci., 1981-1989.

Google Scholar

About this article

How to cite

Alam, A. and Srivastava, S.C., 2009. Marchantia paleacea Bert.  as an indicator of heavy metal pollution. Indian Journal of Forestry, 32(3), pp.465-470. https://doi.org/10.54207/bsmps1000-2009-UVVIS9

Publication History

Manuscript Published on 01 September 2009

Share this article

Anyone you share the following link with will be able to read this content: