1. Adams, M.A. and Grierson, P.F. (2001). Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol., 3:299. https://doi.org/10.1055/s-2001-16454
2. Agarwal, S.K.; Garg, R.K. and Vyas, N.L. (1996). Structure and function of forest ecosystem of South Rajasthan. In: Contributions to the Environmental Sciences (edited by LN Vyas, RK Garg & SD Purohit). Himanshu Publications, Udaipur, New Delhi, pp. 1.
3. Allen, S.E. (1989). Chemical Analysis of Ecological Materials. (edited by SE Stewart), Blackwell Scientific Publishers, Oxford, pp. 368.
4. Ames, D.N. (1966). Assay of inorganic phosphate, total phosphate and phosphatases. Meth. Enzymol., 8:115. https://doi.org/10.1016/0076-6879(66)08014-5
5. Barbour, M.M.; Schurr, U.; Henry, B.K.; Wong, S.C. and Farquhar, G.D. (2000). Variation in the oxygen isotope ratio of phloem sap sucrose from Castor Bean. Evidence in support of the Peclet effect. Plant Physiol., 123:671. https://doi.org/10.1104/pp.123.2.671
6. Barbour, M.M.; Walcroft, A.S. and Fraquar, G.D. (2002). Seasonal variation in ẟ 13C and Δ 18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ., 25:1483. https://doi.org/10.1046/j.0016-8025.2002.00931.x
7. Bhandari, M.M. (1978). Flora of the Indian desert. Scientific Publishers, Jodhpur, Rajasthan.
8. Bilger, W. and Björkman, O. (1990). Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Research, 25:173. https://doi.org/10.1007/BF00033159
9. Bole, P.V. (1999). Butea monosperma. Enzyklopadie der Holzgewachse, 15:1.
10. Cramer, G.R.; Lauchli, A. and Epstein, E. (1986). Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of Cotton. Plant Physiol., 81:792. https://doi.org/10.1104/pp.81.3.792
11. Duquesnay, A.; Breda, N.; Stievenard, M. and Dupouey, J.L. (1998). Changes of tree-ring ẟ 13C and water-use efficiency of Beech (Fagus sylvatica L.) in North-eastern France during the epast century. Plant Cell Environ., 21:565. https://doi.org/10.1046/j.1365-3040.1998.00304.x
12. Farquhar, G.D.; Barbour, M.M. and Henry, B.K. (1998). Interpretation of oxygen isotope composition of leaf material. In: Stable isotopes – integration of biological, ecological, and geochemical processes (edited by H. Griffiths). BIOS Scientific Publishers, Oxford, UK, pp. 27. https://doi.org/10.1201/9781003076865-3
13. Farquhar, G.D.; Hubick, K.T.; Condon, A.G. and Richards, R.A. (1989). Carbon isotope fractionation and plant water-use efficiency. In: Ecological Studies: Stable Isotopes in Ecological Research. (edited by P. W. Rundel, J.R. Ehleringer and K.A. Nagy). Springer, Berlin, Vol. 68:21. https://doi.org/10.1007/978-1-4612-3498-2_2
14. Genty, B.; Briantais, J.M. and Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990:87. https://doi.org/10.1016/S0304-4165(89)80016-9
15. Gerlach, E. and Deuticke, B. (1963). Eine einfache method zur mikrobestimmung von phosphate in der papierchromatographie. Biochem. Z., 337:477.
16. Keitel, C.; Adams, M.A.; Holst, T.; Matazarakis, A.; Mayer, H.; Rennenberg, H. and Gessler, A. (2003). Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short term measure for stomatal conductance of European Beech (Fagus sylvatica L.). Plant Cell Environ., 26:1157. https://doi.org/10.1046/j.1365-3040.2003.01040.x
17. Korol, R.L.; Kirschbaum, M.U.F.; Farquhar, G.D. and Jeffreys, M. (1999). Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiol., 19:551. https://doi.org/10.1093/treephys/19.9.551
18. Laeuchli, A. and Schubert, S. (1989). The role of calcium in the regulation of membrane and cellular growth processes under salt stress, In: Environmental Stress in plants, NATO ASI Series, (edited by J.H. Cherry). Springer-Verlag, Berlin, Vol. G19:131. https://doi.org/10.1007/978-3-642-73163-1_13
19. Lauteri, M.; Scartazza, A.; Guido, M.C. and Brugnoli, E. (1997). Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol., 11:675. https://doi.org/10.1046/j.1365-2435.1997.00140.x
20. Leavitt, S.W. and Long, A. (1986). Stable-carbon isotype variability in tree folige and wood. Ecology, 67:1002. https://doi.org/10.2307/1939823
21. Moellering, H. (1974). L-Malat: Bestimmung mit Malat-Dehydrogenase und Glutamat-Ocalacetat-Transaminase. In: methoden der Enzymatischen Analyse. (edited by H.U. Bergmeyer). VCH Verlagsgesellschafat, Weinheim, Vol. 25:1636.
22. Rascher, U.; Leibig, M. and Lüttge, U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ., 23:397. https://doi.org/10.1046/j.1365-3040.2000.00650.x
23. Scheidegger, Y.; Saurerk, M.; Bahn, M.; and Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia, 125:350. https://doi.org/10.1007/s004420000466
24. Schreiber, U.; Bilger, W. and Neubauer, C. (1995). Chlorophyll fluorescene as a non-intrusive indicator for rapid assessment of in vitro photosynthesis. In: Ecophysiology of Photosynthesis, (edited by E-D Schulze and M.M. Cadwell). Springer Verlag, Berlin pp. 49. https://doi.org/10.1007/978-3-642-79354-7_3
25. Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten (VDLUFA) (1991). Methodenbuch Band I: Die Untersuchung von Boden. 4. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs – und Forschungsanstalten.
26. Warren, C.R.; McGrath, J. and Adams, M.A. (2001). Water availability and carbon isotope discrimination in Conifers. Oecologia, 127:476. https://doi.org/10.1007/s004420000609