Research Article | Published: 01 June 2005

Seasonal photosynthetic performance and nutrients relations of Butea monosperma Taub. in comparison to two other woody species of a seasonal deciduous forest in Se-Rajasthan and to planted trees in the area

Nilima Kumari, Vinay Sharma, Melanie Mikosch, Claudia Unfried, Arthur Gessler, Elke Fischer-Schliebs and Ulrich Lüttge

Indian Journal of Forestry | Volume: 28 | Issue: 2 | Page No. 116-126 | 2005
DOI: https://doi.org/10.54207/bsmps1000-2005-VOIGO3 | Cite this article

Abstract

Butea monosperma Taub. (Fabaceae) is a widespread dominant tree of seasonally dry open forest on rocky hill sites in SE-Rajasthan. It is of ecological importance for habitat-stabilization and of commercial value for its timber and pharmacological applications. Physiological ecology of photosynthesis and water use was studied in B. monosperma in comparison to two less abundant woody species, the tall shrub Capparis sepiaria L. and the straggling, scandent shrub Cocculus hirsutus (L.) Diels. In a natural forest reserve. Levels of essential nutrients in the soil and leaves of these species are presented. Comparisons are also made with a variety of planted trees. B. monosperma tended to have the highest apparent photosynthetic electron transport rates (ETRmax). It had a high capacity for non-photochemical quenching (NPQ). Stable isotope signatures (13C, 18O) indicated flexibility for operating at a wide range of internal/atmospheric CO2 concentrations (ci/ca) and a high water use efficiency (WUE). Thus, ecophysiologically B. monosperma shows traits well suited for the arid rupestrian fields to which it is adapted. This explains its dominance in the area and makes B. monosperma a very suitable tree for afforestation and wasteland reclamation as well as a useful crop for a large variety of pharmacological and other applications.

Keywords

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Adams, M.A. and Grierson, P.F. (2001). Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol., 3:299.  https://doi.org/10.1055/s-2001-16454

Google Scholar

2. Agarwal, S.K.; Garg, R.K. and Vyas, N.L. (1996). Structure and function of forest ecosystem of South Rajasthan. In: Contributions to the Environmental Sciences (edited by LN Vyas, RK Garg & SD Purohit). Himanshu Publications, Udaipur, New Delhi, pp. 1.

Google Scholar

3. Allen, S.E. (1989). Chemical Analysis of Ecological Materials. (edited by SE Stewart), Blackwell Scientific Publishers, Oxford, pp. 368.

Google Scholar

4. Ames, D.N. (1966). Assay of inorganic phosphate, total phosphate and phosphatases. Meth. Enzymol., 8:115.  https://doi.org/10.1016/0076-6879(66)08014-5

5. Barbour, M.M.; Schurr, U.; Henry, B.K.; Wong, S.C. and Farquhar, G.D. (2000). Variation in the oxygen isotope ratio of phloem sap sucrose from Castor Bean. Evidence in support of the Peclet effect. Plant Physiol., 123:671.  https://doi.org/10.1104/pp.123.2.671

Google Scholar

6. Barbour, M.M.; Walcroft, A.S. and Fraquar, G.D. (2002). Seasonal variation in ẟ 13C and Δ 18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ., 25:1483.  https://doi.org/10.1046/j.0016-8025.2002.00931.x

Google Scholar

7. Bhandari, M.M. (1978). Flora of the Indian desert. Scientific Publishers, Jodhpur, Rajasthan.

Google Scholar

8. Bilger, W. and Björkman, O. (1990). Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Research, 25:173.  https://doi.org/10.1007/BF00033159

Google Scholar

9. Bole, P.V. (1999). Butea monosperma. Enzyklopadie der Holzgewachse, 15:1.

10. Cramer, G.R.; Lauchli, A. and Epstein, E. (1986). Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of Cotton. Plant Physiol., 81:792.  https://doi.org/10.1104/pp.81.3.792

Google Scholar

11. Duquesnay, A.; Breda, N.; Stievenard, M. and Dupouey, J.L. (1998). Changes of tree-ring ẟ 13C and water-use efficiency of Beech (Fagus sylvatica L.) in North-eastern France during the epast century. Plant Cell Environ., 21:565.  https://doi.org/10.1046/j.1365-3040.1998.00304.x

Google Scholar

12. Farquhar, G.D.; Barbour, M.M. and Henry, B.K. (1998). Interpretation of oxygen isotope composition of leaf material. In: Stable isotopes – integration of biological, ecological, and geochemical processes (edited by H. Griffiths). BIOS Scientific Publishers, Oxford, UK, pp. 27.  https://doi.org/10.1201/9781003076865-3

Google Scholar

13. Farquhar, G.D.; Hubick, K.T.; Condon, A.G. and Richards, R.A. (1989). Carbon isotope fractionation and plant water-use efficiency. In: Ecological Studies: Stable Isotopes in Ecological Research. (edited by P. W. Rundel, J.R. Ehleringer and K.A. Nagy). Springer, Berlin, Vol. 68:21.  https://doi.org/10.1007/978-1-4612-3498-2_2

Google Scholar

14. Genty, B.; Briantais, J.M. and Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, 990:87.  https://doi.org/10.1016/S0304-4165(89)80016-9

15. Gerlach, E. and Deuticke, B. (1963). Eine einfache method zur mikrobestimmung von phosphate in der papierchromatographie. Biochem. Z., 337:477.

Google Scholar

16. Keitel, C.; Adams, M.A.; Holst, T.; Matazarakis, A.; Mayer, H.; Rennenberg, H. and Gessler, A. (2003). Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short term measure for stomatal conductance of European Beech (Fagus sylvatica L.). Plant Cell Environ., 26:1157.  https://doi.org/10.1046/j.1365-3040.2003.01040.x

Google Scholar

17. Korol, R.L.; Kirschbaum, M.U.F.; Farquhar, G.D. and Jeffreys, M. (1999). Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiol., 19:551.  https://doi.org/10.1093/treephys/19.9.551

Google Scholar

18. Laeuchli, A. and Schubert, S. (1989). The role of calcium in the regulation of membrane and cellular growth processes under salt stress, In: Environmental Stress in plants, NATO ASI Series, (edited by J.H. Cherry). Springer-Verlag, Berlin, Vol. G19:131.  https://doi.org/10.1007/978-3-642-73163-1_13

Google Scholar

19. Lauteri, M.; Scartazza, A.; Guido, M.C. and Brugnoli, E. (1997). Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol., 11:675.  https://doi.org/10.1046/j.1365-2435.1997.00140.x

Google Scholar

20. Leavitt, S.W. and Long, A. (1986). Stable-carbon isotype variability in tree folige and wood. Ecology, 67:1002.  https://doi.org/10.2307/1939823

Google Scholar

21. Moellering, H. (1974). L-Malat: Bestimmung mit Malat-Dehydrogenase und Glutamat-Ocalacetat-Transaminase. In: methoden der Enzymatischen Analyse. (edited by H.U. Bergmeyer). VCH Verlagsgesellschafat, Weinheim, Vol. 25:1636.

Google Scholar

22. Rascher, U.; Leibig, M. and Lüttge, U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ., 23:397.  https://doi.org/10.1046/j.1365-3040.2000.00650.x

Google Scholar

23. Scheidegger, Y.; Saurerk, M.; Bahn, M.; and Siegwolf, R. (2000). Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia, 125:350.  https://doi.org/10.1007/s004420000466

Google Scholar

24. Schreiber, U.; Bilger, W. and Neubauer, C. (1995). Chlorophyll fluorescene as a non-intrusive indicator for rapid assessment of in vitro photosynthesis. In: Ecophysiology of Photosynthesis, (edited by E-D Schulze and M.M. Cadwell). Springer Verlag, Berlin pp. 49.  https://doi.org/10.1007/978-3-642-79354-7_3

Google Scholar

25. Verband Deutscher Landwirtschaftlicher Untersuchungs und Forschungsanstalten (VDLUFA) (1991). Methodenbuch Band I: Die Untersuchung von Boden. 4. Darmstadt: Verband Deutscher Landwirtschaftlicher Untersuchungs – und Forschungsanstalten.

26. Warren, C.R.; McGrath, J. and Adams, M.A. (2001). Water availability and carbon isotope discrimination in Conifers. Oecologia, 127:476.  https://doi.org/10.1007/s004420000609

Google Scholar

About this article

How to cite

Kumari, N., Sharma, V., Mikosch, M., Unfried, C., Gessler, A., Fischer-Schliebs, E. and Lüttge, U., 2005. Seasonal photosynthetic performance and nutrients relations of Butea monosperma Taub. in comparison to two other woody species of a seasonal deciduous forest in Se-Rajasthan and to planted trees in the area. Indian Journal of Forestry, 28(2), pp.116-126. https://doi.org/10.54207/bsmps1000-2005-VOIGO3

Publication History

Manuscript Published on 01 June 2005

Share this article

Anyone you share the following link with will be able to read this content: