Review Article | Published: 05 January 2023

Plant secondary metabolites as an alternative to combat antimicrobial resistance: An overview of medicinal plants of Pir Panjal Himalayas

Shreekar Pant, Mohammad Vikas Ashraf, Ali Asghar Shah and Shoeb Ahmad

Journal of Non-Timber Forest Products | Volume: 29 | Issue: 3 | Page No. 121-134 | 2022
DOI: https://doi.org/10.54207/bsmps2000-2023-2I082B | Cite this article

Abstract

Antibiotics have made formidable benefactions to human civilization and found extensive usage in infectious disease treatment. However, indiscriminate and overuse of antibiotics have evolved resistant bacterial strains, which is a cause of concern to healthcare set-ups all around the world. This situation has necessitated the need of introducing new antimicrobials or combination therapies. The slow development of novel synthetic antibiotics has diverted the research towards naturally occurring antimicrobial molecules. Plant secondary metabolites, being diverse and distributed across different habitats, provide fair chances for the exploration and discovery of novel antimicrobials, mainly due to the huge reservoir of phytochemicals produced like alkaloids, flavonoids, tannins and phenolic compounds. The North-Western Himalaya fosters great diversity of medicinal plants, which present a lucrative bioresource available to be explored for the development of novel antimicrobials or potentiating molecules in combination therapies. This review presents an overview of plant-based antimicrobials reported in recent years, along with their targets and mode of action and provides an appraisal of medicinal plant resource of Pir Panjal Himalayan region, along with their reported antimicrobial phytochemicals, which provides excellent opportunity for further exploration and discovery of novel antimicrobials.

Keywords

Antimicrobials, Medicinal plants, North-western Himalayas, Phytochemicals, Plant-based inhibitors

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

References

1. Abraham, E.P. and Chain, E., 1940. An Enzyme from Bacteria able to Destroy Penicillin. Nature, 146. https://doi.org/10.1038/146837a0

Google Scholar

2. Ahmad, M., Ahmad, W., Ahmad, M., Zeeshan, M., Obaidullah and Shaheen, F., 2008. Norditerpenoid alkaloids from the roots of Aconitum heterophyllum Wall with antibacterial activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), pp.1018-1022.  https://doi.org/10.1080/14756360701810140

Google Scholar

3. Bawazeer, S. and Rauf, A., 2021. In Vitro Antibacterial and Antifungal Potential of Amyrin-Type Triterpenoid Isolated from Datura metel Linnaeus. BioMed Research International https://doi.org/10.1155/2021/1543574

Google Scholar

4. Baynesagne, S., Berhane, N., Sendeku, W. and, Ai, L., 2017. Antibacterial activity of Datura stramonium against standard and clinical isolate pathogenic microorganisms. Journal of Medicinal Plants Research, 11(31), pp.501-506.  https://doi.org/10.5897/JMPR2017.6381

Google Scholar

5. Bhavana, K.R. and Shreevathsa, 2014. Medical geography in Charaka Samhita. AYU (An International Quarterly Journal of Research in Ayurveda), 35(4), pp.371-377.  https://doi.org/10.4103/0974-8520.158984

Google Scholar

6. Blaskovich, M.A.T., Kavanagh, A.M., Elliott, A.G., Zhang, B., Ramu, S., Amado, M., Lowe, G.J., Hinton, A.O., Pham, D.M.T., Zuegg, J., Beare, N., Quach, D., Sharp, M.D., Pogliano, J., Rogers, A.P., Lyras, D., Tan, L., West, N.P., Crawford, D.W., Peterson, M.L., Callahan, M. and Thurn, M., 2021. The antimicrobial potential of cannabidiol. Communications Biology, 4. https://doi.org/10.1038/s42003-020-01530-y

Google Scholar

7. Boberek, J.M., Stach, J. and Good, L., 2010. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS ONE, 5(10).  https://doi.org/10.1371/journal.pone.0013745

Google Scholar

8. Broniatowski, M., Mastalerz, P. and Flasi?ski, M., 2015. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane - Langmuir monolayer approach. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(2), pp.469-476.  https://doi.org/10.1016/j.bbamem.2014.10.024

Google Scholar

9. Brown, J.C., Wang, J., Kasman, L., Jiang, X. and Haley?Zitlin, V., 2011. Activities of muscadine grape skin and quercetin against Helicobacter pylori infection in mice. Journal of Applied Microbiology, 110(1), pp.139-146. https://doi.org/10.1111/j.1365-2672.2010.04870.x

Google Scholar

10. Chan, B.C.L., Ip, M., Lau, C.B.S., Lui, S.L., Jolivalt, C., Ganem-Elbaz, C., Litaudon, M., Reiner, N.E., Gong, H., See, R.H., Fung, K.P. and Leung, P.C., 2011. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. Journal of Ethnopharmacology, 137(1), pp.767-773. https://doi.org/10.1016/j.jep.2011.06.039

Google Scholar

11. Chhetri, D.R., 2014. Medicinal plants of the Himalaya: Production Technology and Utilization. Agrobios, Jodhpur.

Google Scholar

12. Cragg, G.M. and Newman, D.J., 2013. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), pp.3670-3695.  https://doi.org/10.1016/j.bbagen.2013.02.008

Google Scholar

13. Dahiya, P. and Purkayastha, S., 2012. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian Journal of Pharmaceutical Sciences, 74(5), pp.443-450.  https://doi.org/10.4103/0250-474X.108420

Google Scholar

14. Dar, B.A., Lone, S.H., Shah, W.A. and Bhat, K.A., 2016. LC-MS guided isolation of bioactive principles from Iris hookeriana and bioevaluation of isolates for antimicrobial and antioxidant activities. Drug Research, 66(8), pp.427-431.  https://doi.org/10.1055/s-0042-108337

Google Scholar

15. Duan, F., Xin, G., Niu, H. and Huang, W., 2017. Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA. Scientific Reports, 7.  https://doi.org/10.1038/s41598-017-12905-3

Google Scholar

16. Dufour, V., Stahl, M. and Baysse, C., 2015. The antibacterial properties of isothiocyanates. Microbiology, 161(2), pp.229-243.  https://doi.org/10.1099/mic.0.082362-0

Google Scholar

17. Emran, T.B., Rahman, M.A., Uddin, M.M.N., Dash, R., Hossen, M.F., Mohiuddin, M. and Alam, M.R., 2015. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. DARU Journal of Pharmaceutical Sciences, 23.  https://doi.org/10.1186/s40199-015-0106-9

Google Scholar

18. Gautam, S.S., Bithel, N., Kumar, S., Painuly, D. and Singh, J., 2017. A new derivative of ionone from aerial parts of Viola odorata Linn. and its antibacterial role against respiratory pathogens. Clinical Phytoscience, 2.  https://doi.org/10.1186/s40816-016-0018-3

Google Scholar

19. Gibbons, S., 2005. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochemistry Reviews, 4, pp.63-78.  https://doi.org/10.1007/s11101-005-2494-9

Google Scholar

20. Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S. and Ennahar, S., 2021. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352. https://doi.org/10.1016/j.foodchem.2021.129396

Google Scholar

21. Guay, I., Boulanger, S., Isabelle, C., Brouillette, E., Chagnon, F., Bouarab, K., Marsault, E. and Malouin, F., 2018. Tomatidine and analog FC04-100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacology and Toxicology, 19.  https://doi.org/10.1186/s40360-018-0197-2

Google Scholar

22. Guleria, V. and Vasishth, A., 2009. Ethnobotanical uses of wild medicinal plants by Guddi and Gujjar tribes of Himachal Pradesh. Ethnobotanical leaflets.

Google Scholar

23. Gunasekara, T.D.C.P., Radhika, N.D.M., Ragunathan, K.K., Gunathilaka, D.P.P., Weerasekera, M.M., Hewageegana, H.G.S.P., Arawwawala, L.A.D.M. and Fernando, S.S.N., 2017. Determination of antimicrobial potential of five herbs used in ayurveda practices against Candida albicans, Candida parapsilosis and methicillin resistant Staphylococcus aureus. Ancient Science of Life, 36(4), pp.187-190.  https://doi.org/10.4103/asl.ASL_179_16

Google Scholar

24. Heeb, S., Fletcher, M.P., Chhabra, S.R., Diggle, S.P., Williams, P. and Cámara, M., 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 35(2), pp.247-274.  https://doi.org/10.1111/j.1574-6976.2010.00247.x

Google Scholar

25. Hochma, E., Yarmolinsky, L., Khalfin, B., Nisnevitch, M., Ben-Shabat, S. and Nakonechny, F., 2021. Antimicrobial Effect of Phytochemicals from Edible Plants. Processes, 9(11).  https://doi.org/10.3390/pr9112089

Google Scholar

26. Houghton, P.J., 2001. Old yet new - pharmaceuticals from plants. Journal of Chemical Education, 78(2).  https://doi.org/10.1021/ed078p175

Google Scholar

27. ISFR, 2021. Indian State of Forest Report, Forest Survey of India (Ministry of Environment, Forest and Climate Change), Dehradun.

28. Insawang, S., Pripdeevech, P., Tanapichatsakul, C., Khruengsai, S., Monggoot, S., Nakham, T., Artrod, A., D’Souza, P.E. and Panuwet, P., 2019. Essential oil compositions and antibacterial and antioxidant activities of five Lavandula stoechas cultivars grown in Thailand. Chemistry & Biodiversity, 16(10).  https://doi.org/10.1002/cbdv.201900371

29. Jameel, M., Islamuddin, M., Ali, A., Afrin, F. and Ali, M., 2014. Isolation, characterization and antimicrobial evaluation of a novel compound N-octacosan 7β ol, from Fumaria parviflora Lam. BMC Complementary and Alternative Medicine, 14.  https://doi.org/10.1186/1472-6882-14-98

Google Scholar

30. Jesus, R.S., Piana, M., Freitas, R.B., Brum, T.F., Alves, C.F.S., Belke, B.V., Mossmann, N.J., Cruz, R.C., Santos, R.C.V., Dalmolin, T.V., Bianchini, B.V., Campos, M.M.A. and Bauermann, L.F., 2018. In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian Journal of Microbiology, 49(2), pp.296-302. https://doi.org/10.1016/j.bjm.2017.02.012

31. Jia, W., Wang, J., Xu, H. and Li, G., 2015. Resistance of Stenotrophomonas maltophilia to fluoroquinolones: Prevalence in a university hospital and possible mechanisms. International Journal of Environmental Research and Public Health, 12(5), pp.5177-5195.  https://doi.org/10.3390/ijerph120505177

Google Scholar

32. Ka?ániová, M., Galovi?ová, L., Ivanišová, E., Vukovic, N.L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S. and Tvrdá, E., 2020. Antioxidant, antimicrobial and antibiofilm activity of Coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods, 9(3).  https://doi.org/10.3390/foods9030282

Google Scholar

33. Kala, C.P., Dhyani, P.P. and Sajwan, B.S., 2006. Developing the medicinal plants sector in northern India: Challenges and opportunities. Journal of Ethnobiology and Ethnomedicine, 2.  https://doi.org/10.1186/1746-4269-2-32

Google Scholar

34. Khameneh, B., Iranshahy, M., Soheili, V. and Bazzaz, B.S.F., 2019. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8.  https://doi.org/10.1186/s13756-019-0559-6

Google Scholar

35. Khan, I.A., Mirza, Z.M., Kumar, A., Verma, V. and Qazi, G.N., 2006. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrobial agents and chemotherapy, 50(2), pp.810-812.  https://doi.org/10.1128/AAC.50.2.810-812.2006

Google Scholar

36. Khan, M.U., Ghori, N.H. and Hayat, M.Q., 2015. Phytochemical analyses for antibacterial activity and therapeutic compounds of Convolvulus arvensis L., collected from the Salt Range of Pakistan. Advancements in Life Sciences, 2(2), pp.83-90.

Google Scholar

37. Khare, T., Anand, U., Dey, A., Assaraf, Y.G., Chen, Z.S., Liu, Z. and Kumar, V., 2021. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Frontiers in Pharmacology, 12.  https://doi.org/10.3389/fphar.2021.720726

Google Scholar

38. Kim, W.J., Hwang, K.H., Park, D.G., Kim, T.J., Kim, D.W., Choi, D.K., Moon, W.K. and Lee, K.H., 2011. Major constituents and antimicrobial activity of Korean herb Acorus calamus. Natural Product Research, 25(13), pp.1278-1281. https://doi.org/10.1080/14786419.2010.513333

Google Scholar

39. King, A.M., Reid-Yu, S.A., Wang, W., King, D.T., Pascale, G.D., Strynadka, N.C., Walsh, T.R., Coombes, B.K. and Wright, G.D., 2014. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510, pp.503-506.  https://doi.org/10.1038/nature13445

Google Scholar

40. Klan?nik, A., Šiki? Poga?ar, M., Trošt, K., Tušek Žnidari?, M., Mozeti? Vodopivec, B. and Smole Možina, S., 2017. Anti?Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. Journal of Applied Microbiology, 122(1), pp.65-77.  https://doi.org/10.1111/jam.13315

Google Scholar

41. Kongkham, B., Prabakaran, D. and Puttaswamy, H., 2020. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia, 147.  https://doi.org/10.1016/j.fitote.2020.104762

Google Scholar

42. Kuete, V., Betrandteponno, R., Mbaveng, A.T., Tapondjou, L.A., Meyer, J.J.M., Barboni, L. and Lall, N., 2012. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera. BMC Complementary and Alternative Medicine, 12.  https://doi.org/10.1186/1472-6882-12-228

Google Scholar

43. Kwon, Y.S., Choi, W.G., Kim, W.J., cKim, W.K., Kim, M.J., Kang, W.H. and Kim, C.M., 2002. Antimicrobial constituents of Foeniculum vulgare. Archives of pharmacal research, 25, pp.154-157.  https://doi.org/10.1007/BF02976556

Google Scholar

44. Lechner, D., Gibbons, S. and Bucar, F., 2008. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium. Phytochemistry Letters, 1(2), pp.71-75.  https://doi.org/10.1016/j.phytol.2008.01.002

Google Scholar

45. Liu, C., Mishra, A.K., He, B. and Tan, R., 2001. Antimicrobial activities of isoalantolactone, a major sesquiterpene lactone of Inula racemosa. Chinese Science Bulletin, 46, pp.498-501.  https://doi.org/10.1007/BF03187267

Google Scholar

46. Malik, T.A., Kamili, A.N., Chishti, M.Z., Ahad, S., Tantry, M.A., Hussain, P.R. and Johri, R.K., 2017. Breaking the resistance of Escherichia coli: Antimicrobial activity of Berberis lycium Royle. Microbial Pathogenesis, 102, pp.12-20. https://doi.org/10.1016/j.micpath.2016.11.011

Google Scholar

47. Marpa, S., Samant, S.S., Tewari, A. and Paul, S., 2020. Diversity and indigenous uses of plants in Naina Devi Sacred Shrine Rewalsar, Himachal Pradesh, North Western Himalaya, India. International Journal of Chemical Studies, 8(2), pp.1265-1276.  https://doi.org/10.22271/chemi.2020.v8.i2s.8939

Google Scholar

48. Mir, M.A., Ashraf, M.W. and Mir, B.A., 2021. Antimicrobial and Antifungal and Phytochemical Analysis of Various Extracts of Equisetum diffusum. Trends Biomater. Artif. Organs, 35(2), pp.186-189.

Google Scholar

49. Moslemi, H.R., Hoseinzadeh, H., Badouei, M.A., Kafshdouzan, K. and Fard, R.M.N., 2012. Antimicrobial activity of Artemisia absinthium against surgical wounds infected by Staphylococcus aureus in a rat model. Indian Journal of Microbiology, 52, pp.601-604.  https://doi.org/10.1007/s12088-012-0283-x

Google Scholar

50. Munita, J.M. and Arias, C.A., 2016. Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2).  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

Google Scholar

51. Muzaffer, U. and Paul, V.I., 2018. Phytochemical analysis, in vitro antioxidant and antimicrobial activities of male flower of Juglans regia L. International Journal of Food Properties, 21(1), pp.345-356.  https://doi.org/10.1080/10942912.2017.1409762

Google Scholar

52. Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L. and Georgiyants, V., 2019. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry, 162, pp.56-89. https://doi.org/10.1016/j.phytochem.2019.02.004

Google Scholar

53. Nakamoto, M., Kunimura, K., Suzuki, J.I. and Kodera, Y., 2019. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Experimental and Therapeutic Medicine, 19(2), pp.1550-1553.  https://doi.org/10.3892/etm.2019.8388

Google Scholar

54. Nazl?, O., Baygar, T., Dönmez, Ç.E.D., Dere, Ö., Uysal, A.?., Aksözek, A., I??k, C. and Aktürk, S., 2019. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorganic Chemistry, 82, pp.224-228.  https://doi.org/10.1016/j.bioorg.2018.08.017

Google Scholar

55. Negi, S.P., 2009. Forest cover in Indian Himalayan states-An overview. Indian J. Forest., 32(1), pp.1-5.  https://doi.org/10.54207/bsmps1000-2009-157Z6J

Google Scholar

56. Njogu, P.M., Thoithi, G.N., Mwangi, J.W., Kamau, F.N., Kibwage, I.O., Kariuki, S.T., Yenesew, A., Mugo, H.N. and Mwalukumbi, J.M., 2011. Phytochemical and Antimicrobial Investigation of Girardinia diversifolia (Link) Friis (Urticaceae). East and Central African Journal of Pharmaceutical Sciences, 14(3), pp.89-94.

Google Scholar

57. Ram Dhiman, M. and P. Muthanarasimha, G., 2022. Biodiversity Conservation of Western Himalayas: A Pluralistic Approach. IntechOpen https://doi.org/10.5772/intechopen.107075

Google Scholar

58. Rather, M.A. and Baba, S.A., 2015. Traditional use of medicinal plants in Kashmir: A review. Res. Rev. J. Biol., 3(4), pp.26-32.

Google Scholar

59. Rawat, S., Jugran, A.K., Bahukhandi, A., Bahuguna, A., Bhatt, I.D., Rawal, R.S. and Dhar, U., 2016. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech, 6.  https://doi.org/10.1007/s13205-016-0470-2

Google Scholar

60. Rolta, R., Kumar, V., Sourirajan, A., Upadhyay, N.K. and Dev, K., 2020. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens. Journal of Ethnopharmacology, 257.  https://doi.org/10.1016/j.jep.2020.112867

Google Scholar

61. Samant S.S., 2015. Assessment, valuation and conservation prioritization of floristic diversity in trans, North Western and Western Himalaya. D.Sc thesis. Kumaun University, Nainital.

Google Scholar

62. Semwal, D.K. and Rawat, U., 2009. Antimicrobial Hasubanalactam Alkaloid from Stephania glabra. Planta Medica, 75(4), pp.378-380.  https://doi.org/10.1055/s-0028-1112223

Google Scholar

63. Shah, G., Shri, R., Panchal, V., Sharma, N., Singh, B. and Mann, A.S., 2011. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). Journal of Advanced Pharmaceutical Technology & Research, 2(1), pp.3-8.  https://doi.org/10.4103/2231-4040.79796

Google Scholar

64. Shameem, N., Kamili, A.N., Parray, J.A., Hamid, R. and Bandh, S.A., 2015. Antimicrobial and antioxidant activity of methanol extracts of Arnebia benthamii (Wall ex. G.Don) Johnston - A critically endangered medicinal plant of North western Himalaya. Journal of Analytical Science and Technology, 6.  https://doi.org/10.1186/s40543-015-0076-z

Google Scholar

65. Shang, A., Cao, S.Y., Xu, X.Y., Gan, R.Y., Tang, G.Y., Corke, H., Mavumengwana, V. and Li, H.B., 2019. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7).  https://doi.org/10.3390/foods8070246

Google Scholar

66. Shao, J., Zhang, M.X., Wang, T.M., Li, Y. and Wang, C.Z., 2016. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharmaceutical Biology, 54(6), pp.984-992.  https://doi.org/10.3109/13880209.2015.1091483

Google Scholar

67. Sharma, Y.K., 2007. Ayurveda in Rajtrangni-Kalahana’s treatise of ancient Kashmir. Indian Journal of Traditional Knowledge, 6(4), pp.660-662.

Google Scholar

68. Shrestha, R., Shakya, A. and Shrestha, K.K., 2015. Phytochemical Screening and Antimicrobial Activity of Asparagus racemosus Willd. and Asparagus curillus Buch.-Ham. Ex Roxb. Journal of Natural History Museum, 29, pp.91-102.  https://doi.org/10.3126/jnhm.v29i0.19041

Google Scholar

69. Shriram, V., Jahagirdar, S., Latha, C., Kumar, V., Puranik, V., Rojatkar, S., Dhakephalkar, P.K. and Shitole, M.G., 2008. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. International Journal of Antimicrobial Agents, 32(5), pp.405-410.  https://doi.org/10.1016/j.ijantimicag.2008.05.013

Google Scholar

70. Siriyong, T., Chusri, S., Srimanote, P., Tipmanee, V. and Voravuthikunchai, S.P., 2016. Holarrhenaanti dysenterica Extract and Its Steroidal Alkaloid, Conessine, as Resistance-Modifying Agents Against Extensively Drug-Resistant Acinetobacter baumannii. Microbial Drug Resistance, 22(4), pp.273-282.  https://doi.org/10.1089/mdr.2015.0194

Google Scholar

71. Sridevi, D., Shankar, C., Prakash, P., Park, J.H. and Thamaraiselvi, K., 2017. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chem. Biol. Lett., 4(2), pp.69-72.

Google Scholar

72. Srivastava, A., 2020. Incarvillea emodi (Royle ex Lindl.) Chatterjee, an Economically Potential threatened Himalayan Herb: an Overview. J. Non-Timber Forest Prod., 27(2), pp.121-123.  https://doi.org/10.54207/bsmps2000-2020-66W8X1

73. Sun, M., Sun, M. and Zhang, J., 2021. Osthole: an overview of its sources, biological activities, and modification development. Medicinal Chemistry Research, 30, pp.1767-1794.  https://doi.org/10.1007/s00044-021-02775-w

Google Scholar

74. Tian, C., Zhang, P., Yang, C., Gao, X., Wang, H., Guo, Y. and Liu, M., 2018. Extraction Process, Component Analysis, and In Vitro Antioxidant, Antibacterial, and Anti-Inflammatory Activities of Total Flavonoid Extracts from Abutilon theophrasti Medic. Leaves. Mediators of Inflammation https://doi.org/10.1155/2018/3508506

Google Scholar

75. Tyagi, P., Singh, M., Kumari, H., Kumari, A. and Mukhopadhyay, K., 2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3).  https://doi.org/10.1371/journal.pone.0121313

Google Scholar

76. Yadav, M.K., Chae, S.W., Im, G.J., Chung, J.W. and Song, J.J., 2015. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE, 10(3).  https://doi.org/10.1371/journal.pone.0119564

Google Scholar

77. Zafar, R., Ullah, H., Zahoor, M. and Sadiq, A., 2019. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complementary and Alternative Medicine, 19. https://doi.org/10.1186/s12906-019-2679-1

Google Scholar

78. Zahara, K., Bibi, Y., Qayyum, A. and Nisa, S., 2019. Investigation of Antimicrobial and Antioxidant Properties of Bidens biternata. Iranian Journal of Science and Technology, Transactions A: Science, 43, pp.725-734.  https://doi.org/10.1007/s40995-018-0564-2

Google Scholar

About this article

How to cite

Pant, S., Ashraf, M.V., Shah, A.A. and Ahmad, S., 2022. Plant secondary metabolites as an alternative to combat antimicrobial resistance: An overview of medicinal plants of Pir Panjal Himalayas. Journal of Non-Timber Forest Products, 29(3), pp.121-134. https://doi.org/10.54207/bsmps2000-2023-2I082B

Publication History

Manuscript Received on 04 December 2022

Manuscript Revised on 28 December 2022

Manuscript Accepted on 03 January 2023

Manuscript Published on 05 January 2023

Share this article

Anyone you share the following link with will be able to read this content: