1. Abraham, E.P. and Chain, E., 1940. An Enzyme from Bacteria able to Destroy Penicillin. Nature, 146. https://doi.org/10.1038/146837a0
2. Ahmad, M., Ahmad, W., Ahmad, M., Zeeshan, M., Obaidullah and Shaheen, F., 2008. Norditerpenoid alkaloids from the roots of Aconitum heterophyllum Wall with antibacterial activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(6), pp.1018-1022. https://doi.org/10.1080/14756360701810140
3. Bawazeer, S. and Rauf, A., 2021. In Vitro Antibacterial and Antifungal Potential of Amyrin-Type Triterpenoid Isolated from Datura metel Linnaeus. BioMed Research International. https://doi.org/10.1155/2021/1543574
4. Baynesagne, S., Berhane, N., Sendeku, W. and, Ai, L., 2017. Antibacterial activity of Datura stramonium against standard and clinical isolate pathogenic microorganisms. Journal of Medicinal Plants Research, 11(31), pp.501-506. https://doi.org/10.5897/JMPR2017.6381
5. Bhavana, K.R. and Shreevathsa, 2014. Medical geography in Charaka Samhita. AYU (An International Quarterly Journal of Research in Ayurveda), 35(4), pp.371-377. https://doi.org/10.4103/0974-8520.158984
6. Blaskovich, M.A.T., Kavanagh, A.M., Elliott, A.G., Zhang, B., Ramu, S., Amado, M., Lowe, G.J., Hinton, A.O., Pham, D.M.T., Zuegg, J., Beare, N., Quach, D., Sharp, M.D., Pogliano, J., Rogers, A.P., Lyras, D., Tan, L., West, N.P., Crawford, D.W., Peterson, M.L., Callahan, M. and Thurn, M., 2021. The antimicrobial potential of cannabidiol. Communications Biology, 4. https://doi.org/10.1038/s42003-020-01530-y
7. Boberek, J.M., Stach, J. and Good, L., 2010. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS ONE, 5(10). https://doi.org/10.1371/journal.pone.0013745
8. Broniatowski, M., Mastalerz, P. and Flasi?ski, M., 2015. Studies of the interactions of ursane-type bioactive terpenes with the model of Escherichia coli inner membrane - Langmuir monolayer approach. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(2), pp.469-476. https://doi.org/10.1016/j.bbamem.2014.10.024
9. Brown, J.C., Wang, J., Kasman, L., Jiang, X. and Haley?Zitlin, V., 2011. Activities of muscadine grape skin and quercetin against Helicobacter pylori infection in mice. Journal of Applied Microbiology, 110(1), pp.139-146. https://doi.org/10.1111/j.1365-2672.2010.04870.x
10. Chan, B.C.L., Ip, M., Lau, C.B.S., Lui, S.L., Jolivalt, C., Ganem-Elbaz, C., Litaudon, M., Reiner, N.E., Gong, H., See, R.H., Fung, K.P. and Leung, P.C., 2011. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. Journal of Ethnopharmacology, 137(1), pp.767-773. https://doi.org/10.1016/j.jep.2011.06.039
11. Chhetri, D.R., 2014. Medicinal plants of the Himalaya: Production Technology and Utilization. Agrobios, Jodhpur.
12. Cragg, G.M. and Newman, D.J., 2013. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), pp.3670-3695. https://doi.org/10.1016/j.bbagen.2013.02.008
13. Dahiya, P. and Purkayastha, S., 2012. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian Journal of Pharmaceutical Sciences, 74(5), pp.443-450. https://doi.org/10.4103/0250-474X.108420
14. Dar, B.A., Lone, S.H., Shah, W.A. and Bhat, K.A., 2016. LC-MS guided isolation of bioactive principles from Iris hookeriana and bioevaluation of isolates for antimicrobial and antioxidant activities. Drug Research, 66(8), pp.427-431. https://doi.org/10.1055/s-0042-108337
15. Duan, F., Xin, G., Niu, H. and Huang, W., 2017. Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-12905-3
16. Dufour, V., Stahl, M. and Baysse, C., 2015. The antibacterial properties of isothiocyanates. Microbiology, 161(2), pp.229-243. https://doi.org/10.1099/mic.0.082362-0
17. Emran, T.B., Rahman, M.A., Uddin, M.M.N., Dash, R., Hossen, M.F., Mohiuddin, M. and Alam, M.R., 2015. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. DARU Journal of Pharmaceutical Sciences, 23. https://doi.org/10.1186/s40199-015-0106-9
18. Gautam, S.S., Bithel, N., Kumar, S., Painuly, D. and Singh, J., 2017. A new derivative of ionone from aerial parts of Viola odorata Linn. and its antibacterial role against respiratory pathogens. Clinical Phytoscience, 2. https://doi.org/10.1186/s40816-016-0018-3
19. Gibbons, S., 2005. Plants as a source of bacterial resistance modulators and anti-infective agents. Phytochemistry Reviews, 4, pp.63-78. https://doi.org/10.1007/s11101-005-2494-9
20. Gosset-Erard, C., Zhao, M., Lordel-Madeleine, S. and Ennahar, S., 2021. Identification of punicalagin as the bioactive compound behind the antimicrobial activity of pomegranate (Punica granatum L.) peels. Food Chemistry, 352. https://doi.org/10.1016/j.foodchem.2021.129396
21. Guay, I., Boulanger, S., Isabelle, C., Brouillette, E., Chagnon, F., Bouarab, K., Marsault, E. and Malouin, F., 2018. Tomatidine and analog FC04-100 possess bactericidal activities against Listeria, Bacillus and Staphylococcus spp. BMC Pharmacology and Toxicology, 19. https://doi.org/10.1186/s40360-018-0197-2
22. Guleria, V. and Vasishth, A., 2009. Ethnobotanical uses of wild medicinal plants by Guddi and Gujjar tribes of Himachal Pradesh. Ethnobotanical leaflets.
23. Gunasekara, T.D.C.P., Radhika, N.D.M., Ragunathan, K.K., Gunathilaka, D.P.P., Weerasekera, M.M., Hewageegana, H.G.S.P., Arawwawala, L.A.D.M. and Fernando, S.S.N., 2017. Determination of antimicrobial potential of five herbs used in ayurveda practices against Candida albicans, Candida parapsilosis and methicillin resistant Staphylococcus aureus. Ancient Science of Life, 36(4), pp.187-190. https://doi.org/10.4103/asl.ASL_179_16
24. Heeb, S., Fletcher, M.P., Chhabra, S.R., Diggle, S.P., Williams, P. and Cámara, M., 2011. Quinolones: from antibiotics to autoinducers. FEMS Microbiology Reviews, 35(2), pp.247-274. https://doi.org/10.1111/j.1574-6976.2010.00247.x
25. Hochma, E., Yarmolinsky, L., Khalfin, B., Nisnevitch, M., Ben-Shabat, S. and Nakonechny, F., 2021. Antimicrobial Effect of Phytochemicals from Edible Plants. Processes, 9(11). https://doi.org/10.3390/pr9112089
26. Houghton, P.J., 2001. Old yet new - pharmaceuticals from plants. Journal of Chemical Education, 78(2). https://doi.org/10.1021/ed078p175
27. ISFR, 2021. Indian State of Forest Report, Forest Survey of India (Ministry of Environment, Forest and Climate Change), Dehradun.
28. Insawang, S., Pripdeevech, P., Tanapichatsakul, C., Khruengsai, S., Monggoot, S., Nakham, T., Artrod, A., D’Souza, P.E. and Panuwet, P., 2019. Essential oil compositions and antibacterial and antioxidant activities of five Lavandula stoechas cultivars grown in Thailand. Chemistry & Biodiversity, 16(10). https://doi.org/10.1002/cbdv.201900371
29. Jameel, M., Islamuddin, M., Ali, A., Afrin, F. and Ali, M., 2014. Isolation, characterization and antimicrobial evaluation of a novel compound N-octacosan 7β ol, from Fumaria parviflora Lam. BMC Complementary and Alternative Medicine, 14. https://doi.org/10.1186/1472-6882-14-98
30. Jesus, R.S., Piana, M., Freitas, R.B., Brum, T.F., Alves, C.F.S., Belke, B.V., Mossmann, N.J., Cruz, R.C., Santos, R.C.V., Dalmolin, T.V., Bianchini, B.V., Campos, M.M.A. and Bauermann, L.F., 2018. In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian Journal of Microbiology, 49(2), pp.296-302. https://doi.org/10.1016/j.bjm.2017.02.012
31. Jia, W., Wang, J., Xu, H. and Li, G., 2015. Resistance of Stenotrophomonas maltophilia to fluoroquinolones: Prevalence in a university hospital and possible mechanisms. International Journal of Environmental Research and Public Health, 12(5), pp.5177-5195. https://doi.org/10.3390/ijerph120505177
32. Ka?ániová, M., Galovi?ová, L., Ivanišová, E., Vukovic, N.L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S. and Tvrdá, E., 2020. Antioxidant, antimicrobial and antibiofilm activity of Coriander (Coriandrum sativum L.) essential oil for its application in foods. Foods, 9(3). https://doi.org/10.3390/foods9030282
33. Kala, C.P., Dhyani, P.P. and Sajwan, B.S., 2006. Developing the medicinal plants sector in northern India: Challenges and opportunities. Journal of Ethnobiology and Ethnomedicine, 2. https://doi.org/10.1186/1746-4269-2-32
34. Khameneh, B., Iranshahy, M., Soheili, V. and Bazzaz, B.S.F., 2019. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8. https://doi.org/10.1186/s13756-019-0559-6
35. Khan, I.A., Mirza, Z.M., Kumar, A., Verma, V. and Qazi, G.N., 2006. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrobial agents and chemotherapy, 50(2), pp.810-812. https://doi.org/10.1128/AAC.50.2.810-812.2006
36. Khan, M.U., Ghori, N.H. and Hayat, M.Q., 2015. Phytochemical analyses for antibacterial activity and therapeutic compounds of Convolvulus arvensis L., collected from the Salt Range of Pakistan. Advancements in Life Sciences, 2(2), pp.83-90.
37. Khare, T., Anand, U., Dey, A., Assaraf, Y.G., Chen, Z.S., Liu, Z. and Kumar, V., 2021. Exploring Phytochemicals for Combating Antibiotic Resistance in Microbial Pathogens. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.720726
38. Kim, W.J., Hwang, K.H., Park, D.G., Kim, T.J., Kim, D.W., Choi, D.K., Moon, W.K. and Lee, K.H., 2011. Major constituents and antimicrobial activity of Korean herb Acorus calamus. Natural Product Research, 25(13), pp.1278-1281. https://doi.org/10.1080/14786419.2010.513333
39. King, A.M., Reid-Yu, S.A., Wang, W., King, D.T., Pascale, G.D., Strynadka, N.C., Walsh, T.R., Coombes, B.K. and Wright, G.D., 2014. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 510, pp.503-506. https://doi.org/10.1038/nature13445
40. Klan?nik, A., Šiki? Poga?ar, M., Trošt, K., Tušek Žnidari?, M., Mozeti? Vodopivec, B. and Smole Možina, S., 2017. Anti?Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. Journal of Applied Microbiology, 122(1), pp.65-77. https://doi.org/10.1111/jam.13315
41. Kongkham, B., Prabakaran, D. and Puttaswamy, H., 2020. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia, 147. https://doi.org/10.1016/j.fitote.2020.104762
42. Kuete, V., Betrandteponno, R., Mbaveng, A.T., Tapondjou, L.A., Meyer, J.J.M., Barboni, L. and Lall, N., 2012. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera. BMC Complementary and Alternative Medicine, 12. https://doi.org/10.1186/1472-6882-12-228
43. Kwon, Y.S., Choi, W.G., Kim, W.J., cKim, W.K., Kim, M.J., Kang, W.H. and Kim, C.M., 2002. Antimicrobial constituents of Foeniculum vulgare. Archives of pharmacal research, 25, pp.154-157. https://doi.org/10.1007/BF02976556
44. Lechner, D., Gibbons, S. and Bucar, F., 2008. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium. Phytochemistry Letters, 1(2), pp.71-75. https://doi.org/10.1016/j.phytol.2008.01.002
45. Liu, C., Mishra, A.K., He, B. and Tan, R., 2001. Antimicrobial activities of isoalantolactone, a major sesquiterpene lactone of Inula racemosa. Chinese Science Bulletin, 46, pp.498-501. https://doi.org/10.1007/BF03187267
46. Malik, T.A., Kamili, A.N., Chishti, M.Z., Ahad, S., Tantry, M.A., Hussain, P.R. and Johri, R.K., 2017. Breaking the resistance of Escherichia coli: Antimicrobial activity of Berberis lycium Royle. Microbial Pathogenesis, 102, pp.12-20. https://doi.org/10.1016/j.micpath.2016.11.011
47. Marpa, S., Samant, S.S., Tewari, A. and Paul, S., 2020. Diversity and indigenous uses of plants in Naina Devi Sacred Shrine Rewalsar, Himachal Pradesh, North Western Himalaya, India. International Journal of Chemical Studies, 8(2), pp.1265-1276. https://doi.org/10.22271/chemi.2020.v8.i2s.8939
48. Mir, M.A., Ashraf, M.W. and Mir, B.A., 2021. Antimicrobial and Antifungal and Phytochemical Analysis of Various Extracts of Equisetum diffusum. Trends Biomater. Artif. Organs, 35(2), pp.186-189.
49. Moslemi, H.R., Hoseinzadeh, H., Badouei, M.A., Kafshdouzan, K. and Fard, R.M.N., 2012. Antimicrobial activity of Artemisia absinthium against surgical wounds infected by Staphylococcus aureus in a rat model. Indian Journal of Microbiology, 52, pp.601-604. https://doi.org/10.1007/s12088-012-0283-x
50. Munita, J.M. and Arias, C.A., 2016. Mechanisms of antibiotic resistance. Microbiology Spectrum, 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
51. Muzaffer, U. and Paul, V.I., 2018. Phytochemical analysis, in vitro antioxidant and antimicrobial activities of male flower of Juglans regia L. International Journal of Food Properties, 21(1), pp.345-356. https://doi.org/10.1080/10942912.2017.1409762
52. Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L. and Georgiyants, V., 2019. Biologically active compounds and pharmacological activities of species of the genus Crocus: A review. Phytochemistry, 162, pp.56-89. https://doi.org/10.1016/j.phytochem.2019.02.004
53. Nakamoto, M., Kunimura, K., Suzuki, J.I. and Kodera, Y., 2019. Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (Review). Experimental and Therapeutic Medicine, 19(2), pp.1550-1553. https://doi.org/10.3892/etm.2019.8388
54. Nazl?, O., Baygar, T., Dönmez, Ç.E.D., Dere, Ö., Uysal, A.?., Aksözek, A., I??k, C. and Aktürk, S., 2019. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorganic Chemistry, 82, pp.224-228. https://doi.org/10.1016/j.bioorg.2018.08.017
55. Negi, S.P., 2009. Forest cover in Indian Himalayan states-An overview. Indian J. Forest., 32(1), pp.1-5. https://doi.org/10.54207/bsmps1000-2009-157Z6J
56. Njogu, P.M., Thoithi, G.N., Mwangi, J.W., Kamau, F.N., Kibwage, I.O., Kariuki, S.T., Yenesew, A., Mugo, H.N. and Mwalukumbi, J.M., 2011. Phytochemical and Antimicrobial Investigation of Girardinia diversifolia (Link) Friis (Urticaceae). East and Central African Journal of Pharmaceutical Sciences, 14(3), pp.89-94.
57. Ram Dhiman, M. and P. Muthanarasimha, G., 2022. Biodiversity Conservation of Western Himalayas: A Pluralistic Approach. IntechOpen. https://doi.org/10.5772/intechopen.107075
58. Rather, M.A. and Baba, S.A., 2015. Traditional use of medicinal plants in Kashmir: A review. Res. Rev. J. Biol., 3(4), pp.26-32.
59. Rawat, S., Jugran, A.K., Bahukhandi, A., Bahuguna, A., Bhatt, I.D., Rawal, R.S. and Dhar, U., 2016. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech, 6. https://doi.org/10.1007/s13205-016-0470-2
60. Rolta, R., Kumar, V., Sourirajan, A., Upadhyay, N.K. and Dev, K., 2020. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens. Journal of Ethnopharmacology, 257. https://doi.org/10.1016/j.jep.2020.112867
61. Samant S.S., 2015. Assessment, valuation and conservation prioritization of floristic diversity in trans, North Western and Western Himalaya. D.Sc thesis. Kumaun University, Nainital.
62. Semwal, D.K. and Rawat, U., 2009. Antimicrobial Hasubanalactam Alkaloid from Stephania glabra. Planta Medica, 75(4), pp.378-380. https://doi.org/10.1055/s-0028-1112223
63. Shah, G., Shri, R., Panchal, V., Sharma, N., Singh, B. and Mann, A.S., 2011. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). Journal of Advanced Pharmaceutical Technology & Research, 2(1), pp.3-8. https://doi.org/10.4103/2231-4040.79796
64. Shameem, N., Kamili, A.N., Parray, J.A., Hamid, R. and Bandh, S.A., 2015. Antimicrobial and antioxidant activity of methanol extracts of Arnebia benthamii (Wall ex. G.Don) Johnston - A critically endangered medicinal plant of North western Himalaya. Journal of Analytical Science and Technology, 6. https://doi.org/10.1186/s40543-015-0076-z
65. Shang, A., Cao, S.Y., Xu, X.Y., Gan, R.Y., Tang, G.Y., Corke, H., Mavumengwana, V. and Li, H.B., 2019. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8(7). https://doi.org/10.3390/foods8070246
66. Shao, J., Zhang, M.X., Wang, T.M., Li, Y. and Wang, C.Z., 2016. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharmaceutical Biology, 54(6), pp.984-992. https://doi.org/10.3109/13880209.2015.1091483
67. Sharma, Y.K., 2007. Ayurveda in Rajtrangni-Kalahana’s treatise of ancient Kashmir. Indian Journal of Traditional Knowledge, 6(4), pp.660-662.
68. Shrestha, R., Shakya, A. and Shrestha, K.K., 2015. Phytochemical Screening and Antimicrobial Activity of Asparagus racemosus Willd. and Asparagus curillus Buch.-Ham. Ex Roxb. Journal of Natural History Museum, 29, pp.91-102. https://doi.org/10.3126/jnhm.v29i0.19041
69. Shriram, V., Jahagirdar, S., Latha, C., Kumar, V., Puranik, V., Rojatkar, S., Dhakephalkar, P.K. and Shitole, M.G., 2008. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria. International Journal of Antimicrobial Agents, 32(5), pp.405-410. https://doi.org/10.1016/j.ijantimicag.2008.05.013
70. Siriyong, T., Chusri, S., Srimanote, P., Tipmanee, V. and Voravuthikunchai, S.P., 2016. Holarrhenaanti dysenterica Extract and Its Steroidal Alkaloid, Conessine, as Resistance-Modifying Agents Against Extensively Drug-Resistant Acinetobacter baumannii. Microbial Drug Resistance, 22(4), pp.273-282. https://doi.org/10.1089/mdr.2015.0194
71. Sridevi, D., Shankar, C., Prakash, P., Park, J.H. and Thamaraiselvi, K., 2017. Inhibitory effects of reserpine against efflux pump activity of antibiotic resistance bacteria. Chem. Biol. Lett., 4(2), pp.69-72.
72. Srivastava, A., 2020. Incarvillea emodi (Royle ex Lindl.) Chatterjee, an Economically Potential threatened Himalayan Herb: an Overview. J. Non-Timber Forest Prod., 27(2), pp.121-123. https://doi.org/10.54207/bsmps2000-2020-66W8X1
73. Sun, M., Sun, M. and Zhang, J., 2021. Osthole: an overview of its sources, biological activities, and modification development. Medicinal Chemistry Research, 30, pp.1767-1794. https://doi.org/10.1007/s00044-021-02775-w
74. Tian, C., Zhang, P., Yang, C., Gao, X., Wang, H., Guo, Y. and Liu, M., 2018. Extraction Process, Component Analysis, and In Vitro Antioxidant, Antibacterial, and Anti-Inflammatory Activities of Total Flavonoid Extracts from Abutilon theophrasti Medic. Leaves. Mediators of Inflammation. https://doi.org/10.1155/2018/3508506
75. Tyagi, P., Singh, M., Kumari, H., Kumari, A. and Mukhopadhyay, K., 2015. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0121313
76. Yadav, M.K., Chae, S.W., Im, G.J., Chung, J.W. and Song, J.J., 2015. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0119564
77. Zafar, R., Ullah, H., Zahoor, M. and Sadiq, A., 2019. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Complementary and Alternative Medicine, 19. https://doi.org/10.1186/s12906-019-2679-1
78. Zahara, K., Bibi, Y., Qayyum, A. and Nisa, S., 2019. Investigation of Antimicrobial and Antioxidant Properties of Bidens biternata. Iranian Journal of Science and Technology, Transactions A: Science, 43, pp.725-734. https://doi.org/10.1007/s40995-018-0564-2