1. Adamski, Z., Gawecki, T. and M.H. Zielinski. (1987). In: Funkcne Integmvane Obhospodamvanie Lesoy a Komplexne Vyuztie Dreva. Medzinarodna Vedecka Konferencia, Zvo len, Czechoslovakia. Acad. Agrie., Poznan, Poland
2. Akhtar, M., Attridge, M.C., Blanchette, R.A., Meyers, G.C. Wall, M.B. Sykes, M.S., Koning Jr., J.W., Burgess, R.R., Wegner, T.H. and Kirk, T.K. (1992). The white rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Kuwahara, M. and Shimada, M. (eds.) Biotechnology in the pulp and paper industry, Proceedings of the 5th International Conference on Biotechnology in the Pulp and Paper Industry, Uni Publishers Co. Ltd., Tokyo. pp. 3-8
3. Ander, P. and Eriksson, K.E. (1975). Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Svensk papperstidning. 18, 641-642
4. Arias, M.E., Arenas, M., Rodriguez, J., Soliveri, J., Ball, A.S. and Hernandez, M. (2003). Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied Environmental Microbiology. 69, 1953-1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003
5. Baciocchi, E., Fabbri. C. and Lanzalunga, O. (2003). Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: Fragmentation reactions in the intermediate radical cations. Journal of Organic Chemistry. 68, 9061-9069. https://doi.org/10.1021/jo035052w
6. Baldrian, P. and Šnajdr, J. (2006). Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology. 39, 1023-1029. https://doi.org/10.1016/j.enzmictec.2006.02.011
7. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C. and Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: lnsights into substrate recognition and correlation with kinetics. Biochemistry. 41, 7325-7333 https://doi.org/10.1021/bi0201318
8. Blanchette, R.A., Farrell, R., Burnes, T.A., Wendler, P.A., Zimmermann, W., Brush, T. and Snyder, R.A. (1992). Biological control of pitch in pulp and paper production by Ophiostoma piliferum. Tappi J. 74, 102-106
9. Blanchette, R.A. (1992). Anatomical responses of xylem to injury and invasion by fungi. In Defense mechanisms of woody plants against fungi (pp. 76-95). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-01642-8_5
10. Blanchette, R.A., Burnes, T.A., Eerdmans, M.M. and Akhtar, M. (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 109-116. https://doi.org/10.1515/hfsg.1992.46.2.109
11. Breen, A. and Singleton, F.L. (1999). Fungi in lignocellulose breakdown and biopulping. Current Opinion in Biotechnology. 10, 252-258. https://doi.org/10.1016/S0958-1669(99)80044-5
12. Call, H.P. and Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of Biotechnology. 53, 163-202. https://doi.org/10.1016/S0168-1656(97)01683-0
13. Chen, M., Yao, S., Zhang, H. and Liang, X. (2010). Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii. Chinese Journal of Chemical Engineering. 18, 824-829. https://doi.org/10.1016/S1004-9541(09)60134-8
14. Cohen, R., Persky, L. and Hadar, Y. (2002). Biotechnological applications and potential of wood degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology. 58, 582-594. https://doi.org/10.1007/s00253-002-0930-y
15. Couto, S.R., Rättö, M., Dominguez, A. and Sanroman, A. (2001). Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors. Process Biochemistry. 36, 995-999. https://doi.org/10.1016/S0032-9592(01)00139-X
16. Cowling, E.B. and Brown, W. (1969). Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Hajni, G.J. and Reese, E.T. (eds.), Celluloses and their Application, Washington, DC: American Chemical Society. pp. 152-187. https://doi.org/10.1021/ba-1969-0095.ch010
17. Daniel, G. (1994). Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS microbiology reviews, 13(2-3), 199-233. https://doi.org/10.1111/j.1574-6976.1994.tb00043.x
18. Daniel, G., Nilsson, T. and Pettersson, B. (1989). Intra-and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanernchaete chrysosporium by using transmission electron microscopy and immunogold labeling. AppI. Env. Microbiol. 55, 871-881. https://doi.org/10.1128/aem.55.4.871-881.1989
19. De Jong, E., Cazemier, A.E., Field. J.A. and De Bont, J.A.M. (1994). Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain B0S55. Applied and Environmental Microbiology. 60, 271-277. https://doi.org/10.1128/aem.60.1.271-277.1994
20. De Souza Silva, C.M.M., De Melo, I.S. and De Oliveira, P.R. (2005). Ligninolytic enzyme production by Ganoderma spp. Enzyme and Microbial Technology. 37, 324-329. https://doi.org/10.1016/j.enzmictec.2004.12.007
21. Dence, C.W. and Lin, S.Y. (1992). General structural features of lignin.Methods in Lignin Chemistry. Springer-Verlag, Berlin, 1-7
22. Eggert, C., Temp, U. and Eriksson, K.E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology. 62, 1151-1158. https://doi.org/10.1128/aem.62.4.1151-1158.1996
23. Elisashvili, V., Kachlishvili, E. and Penninckx, M. (2008). Effect of growth substrate, method of fermentation and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology. 35, 1531-1538. https://doi.org/10.1007/s10295-008-0454-2
24. Eriksson, K.E., Ander, P., Henningsson, B., Nilsson, T. and Goodell, B. (1976). Method for producing cellulose pulp. US Patent No. 3-962-033
25. Eriksson, K.E. (1990). Biotechnology in the pulp and paper industry. Wood science and technology, 24(1), 79-101. https://doi.org/10.1007/BF00225309
26. Esposito, E., Paulillo, S.M., Manfio, G.P. (1998). Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemospere. 37:541-548. https://doi.org/10.1016/S0045-6535(98)00069-1
27. Fukushima, Y. and Kirk, T.K. (1995). Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Applied and Environmental Microbiology. 61 (3). 872-876. https://doi.org/10.1128/aem.61.3.872-876.1995
28. Galliano, H., Gas, G., Seris, J.C., Boudet, A.U. (1991). Lignin degradation by Ridigoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme and Microbial Technology. 13, 478-482. https://doi.org/10.1016/0141-0229(91)90005-U
29. Ganesh Kumar, A., Sekaran, G. and Krishnamoorthy, S. (2006). Solid state fermentation of Achras zapora lignocellulose by Phanerochaete chrysosporium. Bioresource Technology. 97, 1521-1528. https://doi.org/10.1016/j.biortech.2005.06.015
30. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M.L. and Bally, R. (1993). Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for lacease activity in non-motile strains of Aospirillum lipoferum. FEMS Microbiology Letters. 108:205-210. https://doi.org/10.1111/j.1574-6968.1993.tb06100.x
31. Glenn, J.K. and Gold, M.H. (1985). Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics. 242:329-341. https://doi.org/10.1016/0003-9861(85)90217-6
32. Glenn, J.K., Akileswaran, L. and Gold, M.H. (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics. 251, 688-696. https://doi.org/10.1016/0003-9861(86)90378-4
33. Guillén, F., Martínez, A.T., Martínez, M.J. and Evans, C.S. (1994). Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Applied Microbiology and Biotechnology. 41, 465-470. https://doi.org/10.1007/BF00939037
34. Hammel, K.E. (1997). Fungal degradation of lignin. Driven by nature: plant litter quality and decomposition, 33-45
35. Hammel, K.E. and Cullen, D. (2008). Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology. 11(3), 349-355. https://doi.org/10.1016/j.pbi.2008.02.003
36. Hatakka, A. (2001). Biodegradation of 1ignin. In: Biopolymer. Biology, Chemistry, Biotechnology, Applications. Vol. 1. Lignin, Humic Substances and Coal. M. Hofrichter and A. Steinbüchel (eds.). Wiley-WCH, 129-180. https://doi.org/10.1002/3527600035.bpol1005
37. Hatakka, A. and Hammel K.E. (2010). Fungal biodegradation of lignocelluloses. In: The Mycota, A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Esse, K. (series ed). Industrial Applications. 2nd Edition. Hofrichter. M. (volume ed.). Springer Berlin Heidelberg. 10, 319-340. https://doi.org/10.1007/978-3-642-11458-8_15
38. Henningsson, H.B. and Nilsson, T. (1972). Defibration of wood by the use of a white-rot fungus. Stockholm Skogshogskolan Inst Virkeslara Rapp
39. Higuchi, T. (2004). Microbia1 degradation of lignin: Role of lignin peroxidase, manganese peroxidase and laccase. Proceedings of the Japan Academy. Series B. 80, 204-211. https://doi.org/10.2183/pjab.80.204
40. Hofrichter, M. (2002). Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology. 30, 454-466. https://doi.org/10.1016/S0141-0229(01)00528-2
41. Hofrichter, M., Lundell, T. and Hatakka, A. (2001). Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Applied and environmental microbiology, 67(10), 4588-4593. https://doi.org/10.1128/AEM.67.10.4588-4593.2001
42. Hu, M., Zhang, W., Wu, Y., Gao, P. and Lu, X. (2009). Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaete chrysosporium in lignin biodegradation. Bioresource Technology. 100, 2070-2081. https://doi.org/10.1016/j.biortech.2008.05.021
43. Hultman, S. (1997). External environmental measures. External environmental protection in the pulp and paper industry, ISBN 91-7170-283-0. Forest Industry Training, Markaryd AB, Markaryd (Sweden)
44. Kaal, E.E. J., De Jong, E. and Field, J.A. (1993). Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Applied and Environmental Microbiology. 59 (12), 4031-4036. https://doi.org/10.1128/aem.59.12.4031-4036.1993
45. Kawase, K. (1962). Chemical components of wood decayed under natural condition and their properties. Journal of the Faculty of Agriculture, Hokkaido University= ??????????, 52(2), 186-245
46. Kersten, P. and Cullen, D. (2007). Extracellular oxidative systems of the lignin degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology. 44, 77-87. https://doi.org/10.1016/j.fgb.2006.07.007
47. Kersten, P.J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences, 87(8), 2936-2940. https://doi.org/10.1073/pnas.87.8.2936
48. Kirk, T.K., Burgess, R.R. and Koning Jr., J.W. (1990). Use of fungi in pulping wood: an overview of biopulping research. In: Leatham. G. (ed.), Frontiers in Industrial Mycology. Proceedings of Industrial Mycology Symposium, 25-26 June, 1990, Madîson, WI, New York: Routledge. Chapman & Hall: 1992, Chapter 5
49. Kirk, T.K., Koning Jr., J.W., Burgess, R.R., Akhtar, M., Blanchette, R.A., Cameron, D.C., Cullen, D., Kersten, P.J., Lightfoot, E.N., Meyers, G.C., Sachs, I., Sykes, M. and Wall, M.B. (1993). Biopulping- A Glimpse of the Future? USDA Forest Service, Research Paper FPL-RP-523, 1-74.
50. Kirk. T.K. and Farrell, R.L. (1987). Enzymatic combustion: The microbial degradation of lignin. Annual Review Microbiology. 41, 465-501. https://doi.org/10.1146/annurev.mi.41.100187.002341
51. Kuwahara, M., Glenn, J.K., Morgan, M.A. and Gold, M.H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters. 169 (2), 247-250. https://doi.org/10.1016/0014-5793(84)80327-0
52. Lawson, L.R. and Still, C.N. (1957). The biological decomposition of lignin-literature survey. Tappi J, 40(9), 56A-80A
53. Leatham, G.F. (1986). Ligninolytic activities of Lentinus edodes and Phanerochaete chrysosporium. Applied Microbiology and Biotechnology. 24:51-58. https://doi.org/10.1007/BF00266285
54. Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. and Rogalski, J. (2001). Fungal laccase: Properties and activity on lignin. Journal of Basic Microbiology. 41(3-4), 185-227. https://doi.org/10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T
55. Lobos, S., Larrain, J., Cullen, D. and Vicuna, R. (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 140:2691-2698. https://doi.org/10.1099/00221287-140-10-2691
56. Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones G.H. and Henriques, A.O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. The Journal of Biological Chemistry, 277, 18849-18859. https://doi.org/10.1074/jbc.M200827200
57. Messner, K. and Srebotnik, E. (1994). Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiology Reviews, 13(2-3), 351-364. https://doi.org/10.1111/j.1574-6976.1994.tb00054.x
58. Messner, K., Masek, S. and Techt, G. (1992). Fungal pre-treatment of wood chips for chemical pulping. In: Kuwahara, M. and Shimada, M. (eds.), Biotechnology in the Pulp and Paper industry, Proceedings of the 5th international Conference on Biotechnology in thePulp and Paper industry, Tokyo: Uni Publishers. pp. 9-13
59. Messner, K., Schiefermeier, M., Srebotnik, E. and Techt, G. (1993). Bio-sulfite pulping: current slate of research. In: Duarte, J. C., Ferreira, M. C. and Ander, P. (eds.), Proceedings of FEMS Symposium, Lignin Biodegradation and Transformation, Lisboa: Forbitec Editions. pp. 197-200
60. Mester, T. and Tien, M. (2001). Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications. 284, 23-728. https://doi.org/10.1006/bbrc.2001.5015
61. Miki, Y., Ichinose, H. and Wariishi, H. (2011). Detemination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques. Biotechnology Letters. 33 (7), 1423-1427. https://doi.org/10.1007/s10529-011-0571-2
62. Millis, C.D., Cai, D., Stankovich, M.T. and Tien, M. (1989). Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 28, 8484-8489. https://doi.org/10.1021/bi00447a032
63. Niladevi, K.N. and Prema, P. (2008). Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology. 99:4583-4589. https://doi.org/10.1016/j.biortech.2007.06.056
64. Ohkuma, M., Maeda, Y., Johjima, T. and Kudo, T. (2001). Lignin degradation and roles of white rot fungi: Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Riken Review. Focused on Ecomolecular Science Research. 42:39-42
65. Otjen, L., Blanchette, R., Effland, M. and Leatham, G. (1987). Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung. 41, 343-349. https://doi.org/10.1515/hfsg.1987.41.6.343
66. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. and Sannia, G. (2000). Copper induction of lac case isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology. 66, 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000
67. Pasti, M.B., Pometto III, A.L., Nuti, M.P. and Crawford, D.L. (1990). Lignin solubilizing ability of actinomycetes isolated from Termite (Termitidae) gut. Applied Environmental Microbiology. 56: 2213-2318. https://doi.org/10.1128/aem.56.7.2213-2218.1990
68. Périé, F.H. and Gold, M.H. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Applied Environmental Microbiology. 57 (8). 2240-2245. https://doi.org/10.1128/aem.57.8.2240-2245.1991
69. Perie, F.H., Sheng, D., Gold, M.H. (1996). Purification and characterization of two manganese per oxidase isozyrnes from the white-rot basidiomycete Dichomitus squalens. Biochimica Biophysics Acta. 1297:139-148. https://doi.org/10.1016/S0167-4838(96)00096-9
70. Piontek, K., Antorini, M. and Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90 ? resolution containing a full complement of coppers. The Journal of Biological Chemisty. 277 (40), 37663-37669. https://doi.org/10.1074/jbc.M204571200
71. Pradeep, V., Datta, M. (2002). Production of ligninolytic enzymes for decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Applied Biochemistry and Biotechnology. 102:109-118. https://doi.org/10.1385/ABAB:102-103:1-6:109
72. Ramachandra, M., Pometto, A.L. and Crawford, D.L. (1987). Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp: A comparative study of wild type and genetically manipulated strains. Applied Environmental Microbiology. 53:2754-2760. https://doi.org/10.1128/aem.53.12.2754-2760.1987
73. Reis, C.J. and Libby, C.E. (1960). An experimental study of the effect of Fomes pini (Thore) Lloyd on the pulping qualities of Pond Pine, Pinus serotina (Michx.) cooked by the sulphate process. Tappi, 43(5), 489-99
74. Singhal, A. (2008). Optimization of process parameters for biopulping and treatment of pulp and paper mill effluent. Ph.D. Thesis. Jawaharlal Nehru University, New Delhi, India. 5p
75. Smook, G.A. (1997). Handbook for Pulp and Paper Technologists (2nd Edition). Angus Wilde Publications, Vancouver, B. C.
76. Srebotnik, E. and Messner, K. (1994). A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Applied and environmental microbiology, 60(4), 1383-1386. https://doi.org/10.1128/aem.60.4.1383-1386.1994
77. Srebotnik, E., Messner, K. and Foisner, R. (1988). Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium.Applied and environmental microbiology, 54(11), 2608-2614. https://doi.org/10.1128/aem.54.11.2608-2614.1988
78. Srinivasan, C., D'Souza, T.M., Boominathan, K. and Reddy, C.A. (1995). Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied Environmental Microbiology. 61:4274-4277. https://doi.org/10.1128/aem.61.12.4274-4277.1995
79. Stone, J.E., Scallan, A.M., Donefer, E. and Ahlgren, E. (1969). Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. In: Hajni, G.J. and Reese, E.T. (eds.), Celluloses and their Application, Washington, DC: American Chemical Society, pp. 219-241. https://doi.org/10.1021/ba-1969-0095.ch013
80. Sundaramoorthy, M., Gold, M.H. and Poulos, T.L. (2010). Ultrahigh (0.93 ?) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism. Journal of Inorganic Biochemisty. 104 (6). 683-690. https://doi.org/10.1016/j.jinorgbio.2010.02.011
81. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K. and Inamori, Y.A. (2003). Thermostable laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence and Expression. Bioscience, Biotechnology, and Biochemistry. 67: 2167-2175 https://doi.org/10.1271/bbb.67.2167
82. Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology. 140, 19-26. https://doi.org/10.1099/13500872-140-1-19
83. Tien, M. and Kirk, T.K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science (Washington) 221:661-662. https://doi.org/10.1126/science.221.4611.661
84. Timofeevski, S.L., Nie, G., Reading, N.S. and Aust, S.D. (1999). Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochemical and Biophysical Research Communications. 256, 500-504. https://doi.org/10.1006/bbrc.1999.0360
85. Tomsovsky, M. and Homolka, L. (2003). Laccasc and other ligninolytic enzyme activities of selected strains of Trametes spp. from different localities and substrates. Folia Microbiologica. 48:413-418. https://doi.org/10.1007/BF02931377
86. Ujjin, S., Samakprakone, S., Chuprayoon, B., Kondo, R. and Haruthaithanasan, V. (2001). ST2A-3-1, ST2A-3-2, ST2A-3-3: Biopulping of paper mulberry by lignin-degrading fungus. Rinkem Review, 42: 531-536
87. Vares, T., Kalsi, M., Hatakka, A. (1995). Lignin peroxidases, manganese peroxidases and other ligninolytic enzymes produced by Phlebia radiata during solid state fermentation of wheat straw. Applied Environmental Microbiology. 61:3515-3520. https://doi.org/10.1128/aem.61.10.3515-3520.1995
88. Wang, Y., Vazquez-Duhalt, R. and Pickard, M.A. (2002). Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology. 45:77-87. https://doi.org/10.1007/s00284-001-0081-x
89. Wong, D. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology. 157, 174-209. https://doi.org/10.1007/s12010-008-8279-z
90. Yang, J.S., Liu, W. and Ni, J.R. (2006). Isolation, identification of lignin-degrading bacteria and purification of lignin peroxidase. Huan Jing Ke Xue. 27: 981-985