Research Article | Published: 01 March 2016

Biological Pretreatment of Lignocellulosic Material for Biopulping: A Review

Shardesh  Kumar  Chaurasia, Prakashchandra N. Mervana, Satyapal Singh and Sanjay  Naithani

Journal of Non-Timber Forest Products | Volume: 23 | Issue: 1 | Page No. 1-12 | 2016
DOI: https://doi.org/10.54207/bsmps2000-2016-MIR5P1 | Cite this article

Abstract

Biopulping has the potential to improve pulp quality, paper properties and to reduce energy costs and environmental impact relative to traditional pulping approaches. The technology has focused on the white rot fungi that are known to be degrader of wood constituents. This group of fungi have complex extracellular ligninolytic enzyme systems that can selectively degrade/ alter lignin structure and allow cellulose fibres to be relatively unaffected. It colonizes either on living or dead wood and decomposes almost all plant cell wall polymers including lignin and extractives making it to be extremely potential to be used in biopulping. Biopulping reduces the chemical load in paper industry and thus partially limiting environmental threats caused by conventional pulping. It has been advised that energy savings alone could make the process economically viable. Other benefits include improved burst strength and tear indices of product and reduced pitch deposition.

Keywords

Biopulping, White Rot Fungi, Ligninolytic Enzyme, Cellulose, Lignin, Pulp and Paper

Access Options

250/-

Buy Full Access in HTML Format

Instant access to the full article.

Get access to the full version of this article. Buy Full Access in HTML Format

References

1. Adamski, Z., Gawecki, T. and M.H. Zielinski. (1987). In: Funkcne Integmvane Obhospodamvanie Lesoy a Komplexne Vyuztie Dreva. Medzinarodna Vedecka Konferencia, Zvo len, Czechoslovakia. Acad. Agrie., Poznan, Poland

2. Akhtar, M.,  Attridge, M.C., Blanchette, R.A., Meyers, G.C. Wall, M.B. Sykes, M.S., Koning Jr., J.W., Burgess, R.R.,  Wegner, T.H. and  Kirk, T.K. (1992). The white rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Kuwahara, M. and Shimada, M. (eds.) Biotechnology in the pulp and paper industry, Proceedings of the 5th International Conference on Biotechnology in the Pulp and Paper Industry, Uni Publishers Co. Ltd., Tokyo. pp. 3-8

Google Scholar

3. Ander, P. and Eriksson, K.E. (1975). Influence of carbohydrates on lignin degradation by the white-rot fungus Sporotrichum pulverulentum. Svensk papperstidning. 18, 641-642

Google Scholar

4. Arias, M.E., Arenas, M., Rodriguez, J., Soliveri, J., Ball, A.S. and Hernandez, M. (2003). Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied Environmental Microbiology. 69, 1953-1958. https://doi.org/10.1128/AEM.69.4.1953-1958.2003

Google Scholar

5. Baciocchi, E., Fabbri. C. and Lanzalunga, O. (2003). Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: Fragmentation reactions in the intermediate radical cations. Journal of Organic Chemistry. 68, 9061-9069. https://doi.org/10.1021/jo035052w

Google Scholar

6. Baldrian, P. and Šnajdr, J. (2006). Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes. Enzyme and Microbial Technology. 39, 1023-1029. https://doi.org/10.1016/j.enzmictec.2006.02.011

Google Scholar

7. Bertrand, T., Jolivalt, C., Briozzo, P., Caminade, E., Joly, N., Madzak, C. and Mougin, C. (2002). Crystal structure of a four-copper laccase complexed with an arylamine: lnsights into substrate recognition and correlation with kinetics. Biochemistry. 41, 7325-7333 https://doi.org/10.1021/bi0201318

Google Scholar

8. Blanchette, R.A., Farrell, R., Burnes, T.A., Wendler, P.A., Zimmermann, W., Brush, T. and Snyder, R.A. (1992). Biological control of pitch in pulp and paper production by Ophiostoma piliferum. Tappi J. 74, 102-106

Google Scholar

9. Blanchette, R.A. (1992). Anatomical responses of xylem to injury and invasion by fungi. In Defense mechanisms of woody plants against fungi (pp. 76-95). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-01642-8_5

Google Scholar

10. Blanchette, R.A., Burnes, T.A., Eerdmans, M.M. and Akhtar, M. (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 109-116. https://doi.org/10.1515/hfsg.1992.46.2.109

Google Scholar

11. Breen, A. and Singleton, F.L. (1999). Fungi in lignocellulose breakdown and biopulping. Current Opinion in Biotechnology. 10, 252-258. https://doi.org/10.1016/S0958-1669(99)80044-5

Google Scholar

12. Call, H.P. and Mücke, I. (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). Journal of Biotechnology. 53, 163-202. https://doi.org/10.1016/S0168-1656(97)01683-0

Google Scholar

13. Chen, M., Yao, S., Zhang, H. and Liang, X. (2010). Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii. Chinese Journal of Chemical Engineering. 18, 824-829. https://doi.org/10.1016/S1004-9541(09)60134-8

Google Scholar

14. Cohen, R., Persky, L. and Hadar, Y. (2002). Biotechnological applications and potential of wood degrading mushrooms of the genus Pleurotus. Applied Microbiology and Biotechnology. 58, 582-594. https://doi.org/10.1007/s00253-002-0930-y

Google Scholar

15. Couto, S.R., Rättö, M., Dominguez, A. and Sanroman, A. (2001). Strategies for improving ligninolytic enzyme activities in semi-solid-state bioreactors. Process Biochemistry. 36, 995-999. https://doi.org/10.1016/S0032-9592(01)00139-X

Google Scholar

16. Cowling, E.B. and Brown, W. (1969). Structural features of cellulosic materials in relation to enzymatic hydrolysis. In: Hajni, G.J. and Reese, E.T. (eds.), Celluloses and their Application, Washington, DC: American Chemical Society. pp. 152-187. https://doi.org/10.1021/ba-1969-0095.ch010

Google Scholar

17. Daniel, G. (1994). Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS microbiology reviews, 13(2-3), 199-233. https://doi.org/10.1111/j.1574-6976.1994.tb00043.x

Google Scholar

18. Daniel, G., Nilsson, T. and Pettersson, B. (1989). Intra-and extracellular localization of lignin peroxidase during the degradation of solid wood and wood fragments by Phanernchaete chrysosporium by using transmission electron microscopy and immunogold labeling. AppI. Env. Microbiol. 55, 871-881. https://doi.org/10.1128/aem.55.4.871-881.1989

Google Scholar

19. De Jong, E., Cazemier, A.E., Field. J.A. and De Bont, J.A.M. (1994). Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain B0S55. Applied and Environmental Microbiology. 60, 271-277. https://doi.org/10.1128/aem.60.1.271-277.1994

Google Scholar

20. De Souza Silva, C.M.M., De Melo, I.S. and De Oliveira, P.R. (2005). Ligninolytic enzyme production by Ganoderma spp. Enzyme and Microbial Technology. 37, 324-329. https://doi.org/10.1016/j.enzmictec.2004.12.007

Google Scholar

21. Dence, C.W. and Lin, S.Y. (1992). General structural features of lignin.Methods in Lignin Chemistry. Springer-Verlag, Berlin, 1-7

22. Eggert, C., Temp, U. and Eriksson, K.E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology. 62, 1151-1158. https://doi.org/10.1128/aem.62.4.1151-1158.1996

Google Scholar

23. Elisashvili, V., Kachlishvili, E. and Penninckx, M. (2008). Effect of growth substrate, method of fermentation and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology. 35, 1531-1538. https://doi.org/10.1007/s10295-008-0454-2

Google Scholar

24. Eriksson, K.E., Ander, P., Henningsson, B., Nilsson, T. and Goodell, B. (1976). Method for producing cellulose pulp. US Patent No. 3-962-033

25. Eriksson, K.E. (1990). Biotechnology in the pulp and paper industry. Wood science and technology, 24(1), 79-101. https://doi.org/10.1007/BF00225309

Google Scholar

26. Esposito, E., Paulillo, S.M., Manfio, G.P. (1998). Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemospere. 37:541-548. https://doi.org/10.1016/S0045-6535(98)00069-1

Google Scholar

27. Fukushima, Y. and Kirk, T.K. (1995). Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Applied and Environmental Microbiology. 61 (3). 872-876. https://doi.org/10.1128/aem.61.3.872-876.1995

Google Scholar

28. Galliano, H., Gas, G., Seris, J.C., Boudet, A.U. (1991). Lignin degradation by Ridigoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme and Microbial Technology. 13, 478-482. https://doi.org/10.1016/0141-0229(91)90005-U

Google Scholar

29. Ganesh Kumar, A., Sekaran, G. and Krishnamoorthy, S. (2006). Solid state fermentation of Achras zapora lignocellulose by Phanerochaete chrysosporium. Bioresource Technology. 97, 1521-1528. https://doi.org/10.1016/j.biortech.2005.06.015

Google Scholar

30. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M.L. and Bally, R. (1993). Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for lacease activity in non-motile strains of Aospirillum lipoferum. FEMS Microbiology Letters. 108:205-210. https://doi.org/10.1111/j.1574-6968.1993.tb06100.x

Google Scholar

31. Glenn, J.K. and Gold, M.H. (1985). Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics. 242:329-341. https://doi.org/10.1016/0003-9861(85)90217-6

Google Scholar

32. Glenn, J.K., Akileswaran, L. and Gold, M.H. (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics. 251, 688-696. https://doi.org/10.1016/0003-9861(86)90378-4

Google Scholar

33. Guillén, F., Martínez, A.T., Martínez, M.J. and Evans, C.S. (1994). Hydrogen-peroxide-producing system of Pleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase. Applied Microbiology and Biotechnology. 41, 465-470. https://doi.org/10.1007/BF00939037

Google Scholar

34. Hammel, K.E. (1997). Fungal degradation of lignin. Driven by nature: plant litter quality and decomposition, 33-45

Google Scholar

35. Hammel, K.E. and Cullen, D. (2008). Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology. 11(3), 349-355. https://doi.org/10.1016/j.pbi.2008.02.003

Google Scholar

36. Hatakka, A. (2001). Biodegradation of 1ignin. In: Biopolymer. Biology, Chemistry, Biotechnology, Applications. Vol. 1. Lignin, Humic Substances and Coal. M. Hofrichter and A. Steinbüchel (eds.). Wiley-WCH, 129-180. https://doi.org/10.1002/3527600035.bpol1005

37. Hatakka, A. and Hammel K.E. (2010). Fungal biodegradation of lignocelluloses. In: The Mycota, A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Esse, K. (series ed). Industrial Applications. 2nd Edition. Hofrichter. M. (volume ed.). Springer Berlin Heidelberg. 10, 319-340. https://doi.org/10.1007/978-3-642-11458-8_15

Google Scholar

38. Henningsson, H.B. and Nilsson, T. (1972). Defibration of wood by the use of a white-rot fungus. Stockholm Skogshogskolan Inst Virkeslara Rapp

Google Scholar

39. Higuchi, T. (2004). Microbia1 degradation of lignin: Role of lignin peroxidase, manganese peroxidase and laccase. Proceedings of the Japan Academy. Series B. 80, 204-211. https://doi.org/10.2183/pjab.80.204

Google Scholar

40. Hofrichter, M. (2002). Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology. 30, 454-466. https://doi.org/10.1016/S0141-0229(01)00528-2

Google Scholar

41. Hofrichter, M., Lundell, T. and Hatakka, A. (2001). Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Applied and environmental microbiology, 67(10), 4588-4593. https://doi.org/10.1128/AEM.67.10.4588-4593.2001

Google Scholar

42. Hu, M., Zhang, W., Wu, Y., Gao, P. and Lu, X. (2009). Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaete chrysosporium in lignin biodegradation. Bioresource Technology. 100, 2070-2081. https://doi.org/10.1016/j.biortech.2008.05.021

Google Scholar

43. Hultman, S. (1997). External environmental measures. External environmental protection in the pulp and paper industry, ISBN 91-7170-283-0. Forest Industry Training, Markaryd AB, Markaryd (Sweden)

44. Kaal, E.E. J., De Jong, E. and Field, J.A. (1993). Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. strain BOS55. Applied and Environmental Microbiology. 59 (12), 4031-4036. https://doi.org/10.1128/aem.59.12.4031-4036.1993

Google Scholar

45. Kawase, K. (1962). Chemical components of wood decayed under natural condition and their properties. Journal of the Faculty of Agriculture, Hokkaido University= ??????????, 52(2), 186-245

Google Scholar

46. Kersten, P. and Cullen, D. (2007). Extracellular oxidative systems of the lignin degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology. 44, 77-87. https://doi.org/10.1016/j.fgb.2006.07.007

Google Scholar

47. Kersten, P.J. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences, 87(8), 2936-2940. https://doi.org/10.1073/pnas.87.8.2936

Google Scholar

48. Kirk, T.K., Burgess, R.R. and Koning Jr., J.W. (1990). Use of fungi in pulping wood: an overview of biopulping research. In: Leatham. G. (ed.), Frontiers in Industrial Mycology. Proceedings of Industrial Mycology Symposium, 25-26 June, 1990, Madîson, WI, New York: Routledge. Chapman & Hall: 1992, Chapter 5

Google Scholar

49. Kirk, T.K., Koning Jr., J.W., Burgess, R.R., Akhtar, M., Blanchette, R.A., Cameron, D.C., Cullen, D., Kersten, P.J., Lightfoot, E.N., Meyers, G.C., Sachs, I., Sykes, M. and Wall, M.B. (1993). Biopulping- A Glimpse of the Future? USDA Forest Service, Research Paper FPL-RP-523, 1-74.

50. Kirk. T.K. and Farrell, R.L. (1987). Enzymatic combustion: The microbial degradation of lignin. Annual Review Microbiology. 41, 465-501. https://doi.org/10.1146/annurev.mi.41.100187.002341

Google Scholar

51. Kuwahara, M., Glenn, J.K., Morgan, M.A. and Gold, M.H. (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Letters. 169 (2), 247-250. https://doi.org/10.1016/0014-5793(84)80327-0

Google Scholar

52. Lawson, L.R. and Still, C.N. (1957). The biological decomposition of lignin-literature survey. Tappi J, 40(9), 56A-80A

Google Scholar

53. Leatham, G.F. (1986). Ligninolytic activities of Lentinus edodes and Phanerochaete chrysosporium. Applied Microbiology and Biotechnology. 24:51-58. https://doi.org/10.1007/BF00266285

Google Scholar

54. Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas-Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. and Rogalski, J. (2001). Fungal laccase: Properties and activity on lignin. Journal of Basic Microbiology. 41(3-4), 185-227. https://doi.org/10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T

Google Scholar

55. Lobos, S., Larrain, J., Cullen, D. and Vicuna, R. (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology. 140:2691-2698. https://doi.org/10.1099/00221287-140-10-2691

Google Scholar

56. Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones G.H. and Henriques, A.O. (2002). Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. The Journal of Biological Chemistry, 277, 18849-18859. https://doi.org/10.1074/jbc.M200827200

Google Scholar

57. Messner, K. and Srebotnik, E. (1994). Biopulping: an overview of developments in an environmentally safe paper-making technology. FEMS Microbiology Reviews, 13(2-3), 351-364. https://doi.org/10.1111/j.1574-6976.1994.tb00054.x

Google Scholar

58. Messner, K., Masek, S. and Techt, G. (1992). Fungal pre-treatment of wood chips for chemical pulping. In: Kuwahara, M. and Shimada, M. (eds.), Biotechnology in the Pulp and Paper industry, Proceedings of the 5th international Conference on Biotechnology in thePulp and Paper industry, Tokyo: Uni Publishers. pp. 9-13

Google Scholar

59. Messner, K., Schiefermeier, M., Srebotnik, E. and Techt, G. (1993). Bio-sulfite pulping: current slate of research. In: Duarte, J. C., Ferreira, M. C. and Ander, P. (eds.), Proceedings of FEMS Symposium, Lignin Biodegradation and Transformation, Lisboa: Forbitec Editions. pp. 197-200

Google Scholar

60. Mester, T. and Tien, M. (2001). Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications. 284, 23-728. https://doi.org/10.1006/bbrc.2001.5015

Google Scholar

61. Miki, Y., Ichinose, H. and Wariishi, H. (2011). Detemination of a catalytic tyrosine in Trametes cervina lignin peroxidase with chemical modification techniques. Biotechnology Letters. 33 (7), 1423-1427. https://doi.org/10.1007/s10529-011-0571-2

Google Scholar

62. Millis, C.D., Cai, D., Stankovich, M.T. and Tien, M. (1989). Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 28, 8484-8489. https://doi.org/10.1021/bi00447a032

Google Scholar

63. Niladevi, K.N. and Prema, P. (2008). Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresource Technology. 99:4583-4589. https://doi.org/10.1016/j.biortech.2007.06.056

Google Scholar

64. Ohkuma, M., Maeda, Y., Johjima, T. and Kudo, T. (2001). Lignin degradation and roles of white rot fungi: Study on an efficient symbiotic system in fungus-growing termites and its application to bioremediation. Riken Review. Focused on Ecomolecular Science Research. 42:39-42

Google Scholar

65. Otjen, L., Blanchette, R., Effland, M. and Leatham, G. (1987). Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung. 41, 343-349. https://doi.org/10.1515/hfsg.1987.41.6.343

Google Scholar

66. Palmieri, G., Giardina, P., Bianco, C., Fontanella, B. and Sannia, G. (2000). Copper induction of lac case isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology. 66, 920-924. https://doi.org/10.1128/AEM.66.3.920-924.2000

Google Scholar

67. Pasti, M.B., Pometto III, A.L., Nuti, M.P. and Crawford, D.L. (1990). Lignin solubilizing ability of actinomycetes isolated from Termite (Termitidae) gut. Applied Environmental Microbiology. 56: 2213-2318. https://doi.org/10.1128/aem.56.7.2213-2218.1990

Google Scholar

68. Périé, F.H. and Gold, M.H. (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Applied Environmental Microbiology. 57 (8). 2240-2245. https://doi.org/10.1128/aem.57.8.2240-2245.1991

Google Scholar

69. Perie, F.H., Sheng, D., Gold, M.H. (1996). Purification and characterization of two manganese per oxidase isozyrnes from the white-rot basidiomycete Dichomitus squalens. Biochimica Biophysics Acta. 1297:139-148. https://doi.org/10.1016/S0167-4838(96)00096-9

Google Scholar

70. Piontek, K., Antorini, M. and Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90 ? resolution containing a full complement of coppers. The Journal of Biological Chemisty. 277 (40), 37663-37669. https://doi.org/10.1074/jbc.M204571200

Google Scholar

71. Pradeep, V., Datta, M. (2002). Production of ligninolytic enzymes for decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Applied Biochemistry and Biotechnology. 102:109-118. https://doi.org/10.1385/ABAB:102-103:1-6:109

Google Scholar

72. Ramachandra, M., Pometto, A.L. and Crawford, D.L. (1987). Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp: A comparative study of wild type and genetically manipulated strains. Applied Environmental Microbiology. 53:2754-2760. https://doi.org/10.1128/aem.53.12.2754-2760.1987

Google Scholar

73. Reis, C.J. and Libby, C.E. (1960). An experimental study of the effect of Fomes pini (Thore) Lloyd on the pulping qualities of Pond Pine, Pinus serotina (Michx.) cooked by the sulphate process. Tappi, 43(5), 489-99

Google Scholar

74. Singhal, A. (2008). Optimization of process parameters for biopulping and treatment of pulp and paper mill effluent. Ph.D. Thesis. Jawaharlal Nehru University, New Delhi, India. 5p

Google Scholar

75. Smook, G.A. (1997). Handbook for Pulp and Paper Technologists (2nd Edition). Angus Wilde Publications, Vancouver, B. C.

76. Srebotnik, E. and Messner, K. (1994). A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Applied and environmental microbiology, 60(4), 1383-1386. https://doi.org/10.1128/aem.60.4.1383-1386.1994

Google Scholar

77. Srebotnik, E., Messner, K. and Foisner, R. (1988). Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium.Applied and environmental microbiology, 54(11), 2608-2614. https://doi.org/10.1128/aem.54.11.2608-2614.1988

Google Scholar

78. Srinivasan, C., D'Souza, T.M., Boominathan, K. and Reddy, C.A. (1995). Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied Environmental Microbiology. 61:4274-4277. https://doi.org/10.1128/aem.61.12.4274-4277.1995

Google Scholar

79. Stone, J.E., Scallan, A.M., Donefer, E. and Ahlgren, E. (1969). Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. In: Hajni, G.J. and Reese, E.T. (eds.), Celluloses and their Application, Washington, DC: American Chemical Society, pp. 219-241. https://doi.org/10.1021/ba-1969-0095.ch013

Google Scholar

80. Sundaramoorthy, M., Gold, M.H. and Poulos, T.L. (2010). Ultrahigh (0.93 ?) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism. Journal of Inorganic Biochemisty. 104 (6). 683-690. https://doi.org/10.1016/j.jinorgbio.2010.02.011

Google Scholar

81. Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K. and Inamori, Y.A. (2003). Thermostable laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence and Expression. Bioscience, Biotechnology, and Biochemistry. 67: 2167-2175 https://doi.org/10.1271/bbb.67.2167

Google Scholar

82. Thurston, C.F. (1994). The structure and function of fungal laccases. Microbiology. 140, 19-26. https://doi.org/10.1099/13500872-140-1-19

Google Scholar

83. Tien, M. and Kirk, T.K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science (Washington) 221:661-662. https://doi.org/10.1126/science.221.4611.661

Google Scholar

84. Timofeevski, S.L., Nie, G., Reading, N.S. and Aust, S.D. (1999). Addition of veratryl alcohol oxidase activity to manganese peroxidase by site-directed mutagenesis. Biochemical and Biophysical Research Communications. 256, 500-504. https://doi.org/10.1006/bbrc.1999.0360

Google Scholar

85. Tomsovsky, M. and Homolka, L. (2003). Laccasc and other ligninolytic enzyme activities of selected strains of Trametes spp. from different localities and substrates. Folia Microbiologica. 48:413-418. https://doi.org/10.1007/BF02931377

Google Scholar

86. Ujjin, S., Samakprakone, S., Chuprayoon, B., Kondo, R. and Haruthaithanasan, V. (2001). ST2A-3-1, ST2A-3-2, ST2A-3-3: Biopulping of paper mulberry by lignin-degrading fungus. Rinkem Review, 42: 531-536

87. Vares, T., Kalsi, M., Hatakka, A. (1995). Lignin peroxidases, manganese peroxidases and other ligninolytic enzymes produced by Phlebia radiata during solid state fermentation of wheat straw. Applied Environmental Microbiology. 61:3515-3520. https://doi.org/10.1128/aem.61.10.3515-3520.1995

Google Scholar

88. Wang, Y., Vazquez-Duhalt, R. and Pickard, M.A. (2002). Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology. 45:77-87. https://doi.org/10.1007/s00284-001-0081-x

Google Scholar

89. Wong, D. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology. 157, 174-209. https://doi.org/10.1007/s12010-008-8279-z

Google Scholar

90. Yang, J.S., Liu, W. and Ni, J.R. (2006). Isolation, identification of lignin-degrading bacteria and purification of lignin peroxidase. Huan Jing Ke Xue. 27: 981-985

Google Scholar

About this article

How to cite

Chaurasia, S.K., Mervana, P.N., Singh, S. and Naithani, S., 2016. Biological Pretreatment of Lignocellulosic Material for Biopulping: A Review. Journal of Non-Timber Forest Products, 23(1), pp.1-12. https://doi.org/10.54207/bsmps2000-2016-MIR5P1

Publication History

Manuscript Published on 01 March 2016

Share this article

Anyone you share the following link with will be able to read this content: